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Speckle Removal of SAR Imagery Using a
Point-Jacobian Iteration MAP Estimation
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Abstract : In this paper, an iterative MAP approach using a Bayesian model based on the lognormal
distribution for image intensity and a GRF for image texture is proposed for despeckling the SAR images
that are corrupted by multiplicative speckle noise. When the image intensity is logarithmically transformed,
the speckle noise is approximately Gaussian additive noise, and it tends to a normal probability much faster
than the intensity distribution. MRFs have been used to model spatially correlated and signal-dependent
phenomena for SAR speckled images. The MRF is incorporated into digital image analysis by viewing pixel
types as states of molecules in a lattice-like physical system defined on a GRF. Because of the MRF-GRF
equivalence, the assignment of an energy function to the physical system determines its Gibbs measure,
which is used to model molecular interactions.

The proposed Point-Jacobian lterative MAP estimation method was first evaluated using simulation data
generated by the Monte Carlo method. The methodology was then applied to data acquired by the ESA’s
ERS satellite on Nonsan area of Korean Peninsula. In the extensive experiments of this study, The
proposed method demonstrated the capability to relax speckle noise and estimate noise-free intensity.
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1. Introduction

In the last couple of decades, the use of Synthetic
Aperture Radar (SAR) has become increasingly
popular because there are several well-known
advantages of SAR data over other imaging systems
(Leberl, 1990) including its capacity of imaging
regardless weather conditions. However, the radar
wave coherence produces “speckle” in SAR imagery.

This phenomenon gives to the images a granular
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appearance that complicates image analysis and
interpretation in remote sensing tasks. Although it is a
deterministic phenomenon due to the coherent
processing of terrain backscattering signals, the
speckle contribution is often considered as noise that
degrades the quality of SAR imagery. Speckle
filtering is a common requirement in many SAR
image applications. Up to now, speckle reduction
remains a major issue in SAR imagery processing.

Speckle noise is supposed to be dependent on the
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signal intensity in the sense that the noise level
increases with the brightness. A simple statistical
model based on multiplicative noise (Dainty, 1984)
has been often used for the speckle reduction. Many
adaptive filters have been developed to reduce
multiplicative noise in SAR images by taking local
statistics in order to distinguish between homogeneous
regions and edges. The best-known filters include the
Lee filter (Lee, 1986), Frost filter (Frost ef al., 1982),
Kuan filter (Kuan et al., 1985) and Gamma filter
(Lopez et al., 1993). The Frost filter was designed as
an adaptive Wiener filter that assumed an
autoregressive exponential model for the scene
reflectivity. Kuan considered a multiplicative speckle
model and designed a linear filter based on the
minimum mean-square error criterion, optimal when
both the scene and the detected intensities are
Gaussian distributed. The Lee filter was a particular
case of the Kuan filter based on a linear

approximation made for the multiplicative noise

model. The Gamma filter was based on a Bayesian

analysis of the image statistics where both intensity
and speckle noise follow a Gamma distribution.

If the number of scattering points per resolution
cell is large, a fully developed speckle pattern can be
modeled as the magnitude of a complex Gaussian
field with independent and identically distributed real
and imaginary components (Goodman, 1976). It
leads to the Rayleigh distribution as the amplitude
distribution model. Despite the theoretical appeal and
the analytical simplicity of the Rayleigh model, high-
resolution SAR images of urban scenes and some
natural scenes such as sea surface deviate from the
Rayleigh distribution (Anastassopoulos, 1999).
Various models have been proposed to accommodate
this problem. The Weibull distribution used in
modeling urban scenes and sea clutter (Sekine and
Mao, 1990), and the K-distribution successfully
modeled sea clutter (Jao, 1984). Both are a special
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case of Rayleigh distribution. The lognormal models
suggested for radar image intensity based on image
statistics alone (Frankot and Chellappa, 1987).

Most SAR data are over-sampled by the SAR
system to get pixel size less than the spatial
resolution. Samples are then spatially correlated.
Markov random fields (MRFs) (Kindermann and
Snell, 1982) have been used to model spatially
correlated and signal-dependent phenomena for SAR
speckled images. Texture involves the spatial
distribution of intensity in a local region. It contains
important information about the structural
arrangement of surfaces and their relationship to their
neighboring surfaces. The MRFs represent a local
interaction of image structure and have been
demonstrated to be quite effective for texture
characterization (Manjunath and Chellappa, 1990).
The image textures have been represented with
various statistical models of the MRF such a
Gaussian MRF model (Walessa and Datcu, 2000), a
casual Gaussian autoregressive random field model
(Bouman and Liu , 1991), and a generalized Ising
model (Andrey and Tarroux, 1998).

In this paper, an iterative maximum a posteriori
(MAP) approach using a Bayesian model based on
the lognormal distribution for image intensity and a
Gibbs random field (GRF) for image texture is
proposed for despeckling the SAR images that are
corrupted by multiplicative speckle noise. When the
image intensity is logarithmically transformed, the
speckle noise is approximately Gaussian additive
noise, and it tends to a normal probability much faster
than the intensity distribution (Arsenault and April,
1976). The MRF is incorporated into digital image
analysis by viewing pixel type s as states of
molecules in a lattice-like physical system defined on
a GRF (Georgii, 1979). Because of the MRF-GRF
equivalence resulted from the Hammersley-Clifford
theorem (Kindermann and Snell, 1982), the
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assignment of an energy function to the physical
system determines its Gibbs measure, which is used
to model molecular interactions. The paper is
organized as follows. Section 2 contains a description
of the Bayesian model for the proposed speckle filter.
The iterative MAP scheme and parameter estimation
are presented in Sections 3 and 4 respectively.
Experimental results of simulation data including
comparison with those of the conventional techniques
are reported and discussed in Section 5. Section 5
also contains the results of satellite SAR data
acquired over an area of Korean Peninsula. Finally,

conclusions are stated in Section 6.

2. Bayesian Function for MAP Estimation

The general model for SAR imagery is given by
@

where for the kth pixel, z; and v, are the noisy

U= Vit &

observation and noise-free intensity respectively, 7
and & and are the corrupting multiplicative speckle
noise and additive noise respectively. The
despeckling problem is to restore the noise-free
intensity.

Since the effect of additive noise in SAR images is
generally much less significant than that of speckle

noise, equation (1) can be rewritten as

@

The use of a logarithmic transform converts the

T = Vi

multiplicative model into an additive one:

Inz=Inv,+ 7. 3

Let I, = {1,2, -+, n} be the set of indices of pixels in
the image. If 1, follows a log-normal distribution,
In 77, follows a Gaussian distribution, and if ¥ = {y; =
In z, k€LY, X = {x = In v, kEL,), and 0f is a

variance of In 7, then
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Y ~ N(X, X)) where > = diagonal{a,?, kel,}.

Image processes are assumed to combine the
random fields associated with intensity and texture
respectively. The objective measure for determining
the optimal restoration of this “double compound
stochastic” image process is based on Bayes’
theorem. Given an observed image Y, the Bayesian
method is to find the MAP estimate from the mode of
the posterior probability distribution of the noise-free
vector X, or equivalently, to maximize the log-
likelihood function

IPN =1In P(Y| X) + In P(X). @
In the proposed algorithm, the MRF is used to
quantify the spatial interaction probabilistically, that
is, to provide a type of prior information on the image
texture.

If R; is the index set of neighbors of the ith pixel, R
={R;1i € I,} is a “neighborhood system” for ,,. A
“clique” of {I,,, R}, c, is a subset of I, such that every
pair of distinct indices in ¢ represents pixels which are
mutual neighbors, and C denotes the set of all cliques.
A GREF relative to the graph {I,, R} on X is defined as

P(X)=Z" exp{-EX))
EX) = .g'c V(X) (energy function)

®)

where Z is a normalizing constant and V. is a
potential function which has the property that it
depends only on X and c. Specification of C and V, is
sufficient to formulate a Gibbs measure for the
region-class model. A particular class of GRF, in
which the energy function is expressed in terms of
non-symmetric ““pair-potentials,” is used in this study.
The pair-potentials comprise a family of non-
symmetric functions {V(i,j) | Gyj) C I} satisfying
V(i) = 0if i = jor (i) & C, where G, is the pair-
clique system (the term “non-symmetric” means that
V(i) is not equal to V(i)

It is natural that neighboring pixels with more
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similar intensity levels have a higher probability of
having the same level. Based on this idea, spatial
interaction can be quantified for image texture
processes based on a distance measure between
neighboring pixels. Here, the energy function of the
GRF is specified as a quadratic function of X, which
defines the probability structure of the texture process:

EX= 2 X aiti-xP ©)

i€1, HEC,

where o is a nonnegative coefficient vector which
represents the “bonding strength” of the ith and the
Jjth pixels.

The log-likelihood function of (4) using the log-

normal intensity model and the GRF texture model is:

IPN oc~(Y-X) X W(Y-X)-XBX (7
where B = {3;} where
-0y for (i€
Bi= (i,j)écp a;  fori=j @®)
0 otherwise
is the bonding strength matrix.

3. Point-Jacobian Iteration MAP Estimation

Since the log-likelihood function of (7) is convex,
the MAP estimate of X is obtained by taking the first

derivative:

TY-X)-BX=0. ©)

The equation (9) can be solved by the point-Jacobian
iteration (Varga, 1962). Decomposing the bonding
strength matrix into a matrix with the diagonal
elements and a matrix with the non-diagonal

elements, the equation (9) is rewritten as

X=M;'TY-M;'B,X
M, = diagonal (0% + By kE1,}. (10)

B, ={ ,B,J | diagonal elements are Ze1o8 }
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The noise-free intensity can be recovered iteratively:

given an initial estimate of X,)?O at hth iteration

£ =M;'Ty-M;'BL, an
equivalently

#=_ 1 |52y X gl viel, (12

o Bl g (i’f)ecpﬂl]] n 12

The iteration converges to a unique solution since
}/(M,[lBS)<1 where ¥(-) denotes the spectral radius
(Cullen, 1972).

4. Bonding Strength Coefficient Estimation

Various regions constituting an image can be
characterized by textural components. The bonding
strength coefficients of (6) are associated with local
interaction between neighboring pixels and can
provide some contextual information on the local
region. It is important to choose the coefficients
suitable for the analyzed image. Given a constant r,
the Bayesian MAP estimation of (7) can be

considered as an optimization problem:

2 2 aihi-xP

arg min | ‘
'Eln (l,])ECp

X

o yk-x)’ <r, VKEL,

) subject to

(13)

Since the objective function and the constraints are

convex, the optimization of (13) is restated as

NI O«’ij(xi’39')2"'24(0'{2()’1"%)2_’“)

i€L|)EC,

arg min (14)

X

where 1 is a “Lagrangian coefficient.” By taking {c/j;
= ;i / A;} instead of {cr;}, the problem of (14) is

equivalent to the maximization of the log-likelihood

function of (7). Suppose {a;;, jelnl EZI =1} as
j

n

the normalized coefficients associated with the relative
strength of interaction between the individual types of
pair-cliques at the ith pixel. These interaction

coefficients represent a textural component for the local
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region corresponding to the ith pixel, and, adopting a
Bayesian interpretation, ¢;=1/4; is referred to as a
parameter that represents the relative strength of prior
beliefs compared to information on the observation.

If the normalized interaction coefficients are

predetermined, the parameters {¢;} are then estimated
from:
ZHy-X)-PBX=0
5 5 . (15)
O (= xp)° <r, VkEI,

where P = diagonal{¢y, k€1,}, and for y(ZPB)<<1,

X=(I+2PBy'Y = (1-ZPB)Y. (16)

2

JViED,. (17)

o (iJ)%Cpaij(yi W’
As mentioned in Section 3, it is natural that
neighboring pixels with more similar intensity levels
have a higher probability of having the same level.
Under this supposition, the normalized coefficients

can be chosen as

-2
v
_ 9T i, as)
~ Y2
i = (iJ)ECp(YZ yj)
0 otherwise

The estimate of X in (16) approximates the optimal
solution as a weighted sum of the values of the center
and neighboring pixels, and thereby the parameters
{®;} are determined reasonably from (16), even for
the cases not satisfying ¥(XPB)<<1. The constant r is
a parameter related to the distribution of ¥ and its

appropriate choice is unit value.

5. Experiments

The proposed Point-Jacobian Iterative MAP
(PJIMAP) estimation method was first evaluated
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using simulation data generated by the Monte Carlo
method. The methodology was then applied to data
acquired by the ESA’s ERS satellite on Nonsan area
of Korean Peninsula.

For the experimenst, 16-bit simulation images of
multiplicative noise model were generated using
various patterns. The 4 image patterns used in this
section are illustrated in Fig. 1. In this study, the
neighborhood system used a square window, for
example, in the first order system, the 8 pair-clique
types are defined on 3 X 3 window: for the (i,/)th
pixel, they are [(iy),(ij+D), [().(iy-DI, [@)G+1)],
(G, G-1 D), [G)G+1j+ DT, ), G-1,+ D],
[G..(+1,j-D)], [(),(-1,4-1)] (note that the pixel
index used in the previous sections is one-
dimensional expression, while the index in this
section is 2-D expression). The variance 0,% was
estimated using the average value of observed

intensities in the neighbor-window:

7.2
L Gl Zew
Oj="p,  andiy= 5 T

(19)

n W

where n,, is the number of pixels in the neighbor-

Fig. 1. Image patterns for simulation: clockwise from north-west
comer - A, B (5classes), E (4classes), F (7 classes).
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window and W; is the set of indices belonging to the

window of the (i,j)th pixel. It is difficult to find a

correct textural component in the noisy observation.

Freaquency(Pattere)

The bonding strength coefficients were estimated

using {fl;} instead of the observed values {y;}, and

10000

g

the initial estimates {)?%} were chosen as {fl;}. A

threshold for the condition of convergence in (12) is

defined as
k /@ (20)
n

where k<<l is a given constant. In the simulation
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experiments, k was given with 0:001. o
First the speckle filters were applied to the
simulation data of pattern A. The simulated noisy

observation image and the histogram of intensity

values are shown in the first row of Fig. 1. Patten A o i

has 5 classes and with the noise-free intensities of Fig. 2. Results of PJIMAP despeckling and histograms: from
. top, observed image, despeckied image of 15 order

500, 1000, 1500, 2000, 2500. The number of plxels neighborhood, despeckled image of 3rd order

belonging to each class is displayed by the bar graph neighborhood (the bar graph in the first histogram

displays the pixel number of each class).
in Fig. 1. The observations are ranged in 0 and 12070

with a left-skew distribution. In the second and third
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Fig. 3. Histogram results of conventional speckle filters using 5 x 5 window for simulation
data in Fig. 2: clockwise from north-west corner - Kuan, Lee, Frost*, Gamma (*Frost
has 8176 pixels of zero values).
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Table 1. Statistics of despeckled results of simulation data of

pattern A.
Sample
Filter | Minimum | Maximum Sl?/lnelge Standard
Deviation
noise-freedata| 500 2500 1663.4 693.2
noisy data | 1 12070 2084.6 1465.9
PJIMAP-1 162 5846 17973 826.3
PIIMAP-3 368 3640 1761.2 739.2
Kuan 0 53466 2085.2 1099.2
Lee 128 9667 2084.3 1158.6
Frost 0 4883 2066.3 909.6
Gamma 110 49M 2084.8 890.4

Fig. 4. Sub-areas of despeckled images using six speckle
filters: from top, noise-free and observed noisy images
(1%t row), PJIMAP-1 and PJMAP-3 (2" row), Kuan
and Lee (3" row), Frost and Gamma (4™ row).
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rows, the results of despeckling using the PTIMAs of
the first order (PJIMAP-1: 3 X 3 neighborhood
window) and third order (PJIMAP-3: 5Xx 5
neighborhood window) are illustrated. As shown in
the figure, the result of PJIMA-3 quite well agrees
with the true pattern, while PIIMAP-1 more or less
failed in relaxing speckle noise for higher intensity
values. The same data were also despeckled by the
most notorious adaptive filters using 5 X5 window.
The histogram results are contained in Fig. 3. The
Kuan and Lee filters yielded similar results, but the
distribution of their results still lean 1o the left. The
Frost and Gamma filters show better performance
than the other adaptive filters, but they are not
successful in fitting on the pattern. The summits of
their histograms are deviated from the points
corresponding to the true pattern and the resultant
intensities still remain in the higher range compared
to the PIIMAPs’. It shows in Table 1 that contains the
statistics of despeckled results. As shown in the table,
the PIIMAPs produced the results harmonizing with
the true pattern. In case of the Frost’s, it generated a
considerable number of zeros (8176 pixels have zero
estimates). The Kuan and Lee filters generated some
very high values. Fig. 4 displays the detailed images
of sub-area for the despeckled data It also shows that
PIIMAP-3 yielded the result close to the noise-free
intensity image. The results of the Kuan and Lee
filters still have significant grainy pattern, and the
others seems to require more relaxation. Next the
simulation study was extended for different patterns.
Figs. 5, 6 and 7 contain the results of the PIIMAP-3
and Gamma filters. They indicate that evaluation on
the performance of the filters are similar to the case of
simulation data of pattern A.

In this experiment, the speckle filters were applied
to the SAR image remotely-sensed by the ESA’s
ERS satellite. This data was acquired over Nonsan

area on Korean Peninsula in the summer of 2004.
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Fig. 5. Results of PJIMAP and Gamma despeckling and
histograms: from top, noise-free and observed noisy
images (15t row), PJIMAP-3 (2" row), Gamma of 5x 5
window (3™ row).
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Fig. 6. Results of PJIMAP and Gamma despeckling and
histograms: from top, noise-free and observed noisy
images (15t row), PJIMAP-3 (2nd row), Gamma of 5% 5
window (39 row).
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Fig. 7. Results of PJIMAP and Gamma despeckling and
histograms: from top, noise~free and observed noisy
images (1%t row), PJIMAP-3 (2™ row), Gamma of 5x 5
window (3™ row).

Fig. 8 displays the images despeckled by PJIMAP-1,
PIIMAP-3, and Gamma filter. The result of PYIMAP-

3 is too much smoothed and it failed in preserving the

Fig. 8. Results of despeckling ESA’s ERS Satellite SAR image
acquired over Nonsan area in Korean Peninsula: clockwise
from north-west comer - Observed image,despeckled
images by PJIMAP-1, PJIMAP-3, and Gamma of 3x 3
window.
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g e

Fig. 9. Results of squared area in Fig. 8 using 5 speckle

filters:
from top, observed images and PJIMAP-1 (15t row),
PJIMAP-2 and PJIMAP-3 (2" row), PJIMAP-1* and
Gamma (3 row) (* more strict convergence
threshold).

detailed structure, and the speckle noise of higher
values remains in the result of Gamma filter. In the
result image of PJIIMAP-1, the speckle noise is
reasonably relaxed and the detailed structure
exhibited in the observation is maintained. Fig. 9
displays the sub-images of the squared area in the
observed image of Fig. 8. The observation shows that
the scene of the sensed area has a complicated

textural component with small and narrow feature.

Due to this fact, the larger order systems of PIIMAP -

do not work well to correctly analyze the data. The
Gamma filter are successtul in keeping the structure,
but failed in removing the speckle noise in the area of
high intensity, and even generated some distorted
estimates. The close look confirms that PIIMAP-1
yielded a robust estimation of this real SAR data. In
Fig. 9, two results of PJIMAP are illustrated. One is

41—

the result with k = 0.001 and the other with k =
0.0001. These are very similar. More iteration is
plausible to generate more reliable estimation in

detailed values, however.

6. Conclusions

PJIMAP filter is proposed for despeckling SAR
imagery, which is an iterative approach to find MAP
estimation of noise-free intensity. In the extensive
experiments of this study, PIIMAP demonstrated the
capability to relax speckle noise and estimate noise-
free intensity. The algorithm is established based on a
multiplicative noise model using a log-normal
distribution and a texture model using GRF. The log-
normal distribution provides a convenient means to
analyze the data with use of a multiplicative model.
There exists an argument that the log-normal
distribution fails in modeling the lower half of the
SAR histograms (Kuttikkad and Chellappa, 1994).
However, the simulation study indicates that
despeckling has more problems in the range of higher
values. The GRF is used to probabilistically quantify
spatial interaction between neighbor pixels to
represent a textural component of the image structure.
It is important to choose an appropriate neighborhood
system defining the GRF. A larger order of
neighborhood system smoothes the image to some
extent, and it results in results in fading the detailed

features existed in the scene.
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