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ON STABILITY OF BANACH FRAMES

PAWAN KUMAR JAIN, SHIV KUMAR KAUSHIK, AND LALIT KUMAR VASHISHT

ABSTRACT. Some stability theorems (Paley-Wiener type) for Banach fra-
mes in Banach spaces have been derived.

1. Introduction

Duffin and Schaeffer [7] introduced frames for Hilbert spaces in 1952. Later
on, in 1986, Daubechies, Grossmann and Meyer [6] found a fundamental new
application to wavelet and Gabor’s transforms in which frames play an impor-
tant role. In fact, the theory of frames is a central tool in many areas such as
signal processing, image processing, data compression etc. Coifman and Weiss
[5] introduced the notion of atomic decomposition for function spaces. Later,
Feichtinger and Grochenig [9] extended the notion of atomic decomposition to
certain Banach spaces. Grdchenig [10] introduced a more general concept for
Banach spaces called a Banach frame. Banach frames were further studied in
2, 4, 8].

Stability theorems for frames in Hilbert spaces were studied in [1, 3, 8, 12]
and for Banach frames were studied by Christensen and Heil [4].

In the present paper, we prove some stability theorems (Paley-Wiener type)
for Banach frames in Banach spaces.

2. Preliminaries

Throughout this paper E will denote a Banach space over the scalar field
K(R or C), E* and E**, respectively, the first and second conjugate space of
E, E; an associated Banach space of scalar valued sequences indexed by N.

A sequence {f,} C E* is said to be total if {z € E : f,(z) = 0,n € N} =
{0}. A sequence {a,} CR is said to be positively confined if 0 < . inf «a, <

<n<oo
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sup an<oo. For z = {z,}, y = {yn} in F and o € K, we definex £y =
1<n<oo

{Zntyn}, ¢y ={Tnyn} and oz = {az,}.

Definition. ([10]) Let £ be a Banach space and E4 an associated Banach
space of scalar valued sequences indexed by N. Let {f,} CE*and S: E4 — E
be given. Then the pair ({f,},S) is called a Banach frame for E with respect
to Eg if

(i) {fn(x)} € Eg,for eachz € E
(ii) there exist positive constants A and B with 0 < A < B < oo such that

(2.1) Allzlle < [{fn(@)}les < Blllls, z€FE

(iii) S is a bounded linear operator such that

S{fn(x)}) =2z, xz€E.

The positive constants A and B, respectively, are called lower and upper
frame bounds of the Banach frame ({f,},S). The operator § : E; — E is
called the reconstruction operator (or the pre-frame operator). The inequality
(2.1) is called the frame inequality. It is easy to observe that frame bounds
need not be unique. Further, if T : E — Ej is the coefficient map given by
T(z) = {fa(z)},z € E, then (||S]))~" and |T| satisfying A < ||S]|7! < |T|| <
B, are also frame bounds for the Banach frames ({f,}, S).

The Banach frame ({f,}, S) is called tight if A = B and normalized tight if
A = B =1. If removal of one f, renders the collection {f,} C E* no longer a
Banach frame for E, then ({f.}, S) is called an exact Banach frame.

3. Main results

We begin with a necessary and sufficient condition for the stability of a
Banach frame.

Theorem 3.1. Let ({fn},S) ({fn} C E*,S: Eq — E) be a Banach frame for
E with respect to Ey. Let {g,} C E* be such that {gn(z)} € Eq, x € E and
let L: E; — E4 be a bounded linear operator such that L{gn(z)} = {fn(x)},
x € E. Then these exists a reconstruction operator U : Eq — E such that
({gn},U) is a Banach frame for E with respect to Ey if and only if there exists
a constant M > 1 such that

H{(Zn = 92) (@)} £, < M min{|[{fa(@)} £o> H{gn(2)} s}, z€E.

Proof. Let As, By; Ay, By, respectively, be the frame bounds for Banach frames
({f=},S) and ({g.},U). Then, using frame inequalities for these frames, we
get

1{(fn = 9u)@)} 5, < (1 n %) 1fa@zss z€E.



ON STABILITY OF BANACH FRAMES 75

Similarly, we obtain

{(Fn — g2) (@)}, < (1 + -i—;) {gn(z)}Es, 2z€E.

Choose M = (1 + f—f) or (1+ %) according as ming||{ fn(2)}| 4, || {gn (2)}] .}

g

is |{fn(@)}|E, or ||[{gn(z)}||E,. Conversely, by hypothesis, {gn(z)} € Ej,
z € E. If Ay and By are the frame bounds for the Banach frame ({f.},S5),
then for each z € F, we have

Allzlle < [{fn(z)} 2,
< H{(fn = ga)(@)}H s + {gn (@)} 2
< (L + M)[{gn(@)} 24
< (1 + M) ([{(fn = gn) (@)} £ + I{fn (@)} £,)
< 1+ MPI{fa(@)} 5.
< (1+M)*Byllz|e -

Let U = SL. Then U : E4 — E be a bounded linear operator such that

U{gn(z)} =z, z € E. Hence ({gn},U) is a Banach frame for E with respect
to Ed. O

Note. In the converse part of the Theorem 3.1 one may replace the condition
M>1by M > 0.

The stability of Banach frame in Theorem 3.1 depends on the value of M
since for large M, the frame inequality gets lost. Therefore, we still need
stability conditions which gives optimal frame bounds. The following theorem
gives such stability conditions.

Theorem 3.2. Let ({f,},S) be a Banach frame for E with respect to E4. Let
{gn} C E* be such that {gn(z)} € E4, x € E and let V : E — Eg be coefficient

mapping given by V{(z) = {gn(x)}, z € E. If there exist non-negative constants
A, v and € such that

@ (TN + VIl + 1) /max{}, u,v, e} < (IS])~*
(D) [{(fn = gn) (@) HE, < A{Fa(@)HIE, + 2060{fn (@)} 2, 1{gn (@)} |,
+v{gn(2)}IE, +¢&llzl%, = € E,
then there exists a reconstruction operator U such that ({gn},U) is a Banach
frame for E with respect to Eq and with frame bounds

((\lsm-l — (1SN~ + 1)y/max{X, i, v, ) Vﬂ)
1+ /max{\, u,v,&}

(nTu + (IT)l + 1)y/max{X, 4, v, € 5‘})
1 — v/max{\, u,v, &} ’

and
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where T' is the coefficient mapping given by Tx = {fn(2)}, z € E.
Proof. Let n = max{\, u,v,£}. Then (ii) may be restated as:
I{fn = gn) (@)} Es < VA{fa(@)}HEa + H{on(@)}H e, + lI2]E), z€E.

Now
{gn (@) H z: £ {Fn(@)}HlEs + {(fn — 9n) (@)} 54
< {fn@ e, + va({fa@)H e, + Hgn(@)}H 2, + llzl2) -
This gives
1= vn)l{gn@)}H e, < 1+ vD){fn(@)}H e, + vrllzle
<A+ vDITI+ va ] llzle.

Also, since ST : E — F is an identity operator,

lzllz = 1STzl|le < I1S]| I{fn(z)}H|E, -
Thus
Hgn(@)HlEs 2 {fn(@)}H Es — I{(fn — gn)(2)} 2,
2 [{fn@)H s — va(l{fa(@)H e, + [{gn (@)} e, + l2]2)
A+ vDHgn@)}HlEs 2 1= vDUSINT Nzl = vallele
= [ —vIS™ = v ] llzllz -

Therefore

((1 —VmUSH~! = \/7_7) Izl
1+./m
{gn (@)} 24
((1 +vDIT| + va
1—/n
Also ST = I where I is an identity mapping on E. Therefore
11~ sv) < ISiT - V)
< IS (T + V1| + 1)
< 1.

A

IA

) lalls, =€ E.

Thus, SV is invertible. Put U = (SV)™'S. Then U : E; — E is a bounded
linear operator such that U({gn(z)}) = , x € E. Hence ({g,},U) is a Banach

frame for E with respect to E; and with desired frame bounds.

We shall now show that Banach frames are stable under perturbation of

frame elements by positively confined sequence of scalars.
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Theorem 3.3. Let ({f.}, S) be a Banach frame for E with respect to Eq C £°.
Let {gn} C E* be such that {gn(z)} € Eq, 2 € E and let L : E4 — Eq be a
bounded linear operator such that L{gn(z)} = {fn(z)}, © € Eq. Let {an},
{Bn} C R be two positively confined sequences. If there exist non-negative
sealars A, p (0 < p < 1) and v such that

@ v <=1 (nt )
.. “{(anfn_ﬁngn)(w)}HEd

(i) ‘
< M{(anfn) @) H s + 1l{(Bagn) (@)} 2 +2llE, = € E,
then there exists a reconstruction operator U such that ({gn},U) is a Banach
frame for E with respect to Eq and with frame bounds

(= N(Ish (lgisim“"> -
(1+u) ( Sup B”)

1<n<

and

14+ 0] ( sup an> .
1<n<oo

(1~ p) (lsi;;gooﬁn>

where T' is the coefficient mapping given by Tx = {fn(x)}, x € E.

Proof. The operator ST : E — E is an identity operator such that
lelle = ST (2)lle < |SI 1{fu(z)}z,, z€E.

Now
{(Brgn) (@} e, < {{anfu) (@) H e, + [{{anfn = Bugn) (@)} 2,
< {(anfn)(@)Hie, + A{(anfo) (@)} e,
+ ul{(Brgn)(@)}HE, + A2l T E.
This gives

(1 = ){H{(Bngn) (@)} £,
< (@i sup_an) 2 tele, zeB.
Since E4 C £°°, we get

=) nt_6n) lHane)l

1<n<

1 = 1)1{(Bugn) (@)} 22
(<1+A>HT||( sup an>+’y> lzllz,  w€E.

1<n<oo

IA

IN
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Also, by condition (ii), we get
1+ wIH{Brgn)(@)}HiEs = (1 = N{(anfo)(@)}H e, = 7lzllE

> (@=nas7 (,jof_an) =) lils, o € .
Therefore
(1+p) (133300 ﬂn) {gn (=)},
> (14 W (Bage) @)z,
> (=200~ (ot _an) =7)lells, o< B
Hence

- Ns) ™ ( gnf e ) =

<n<oo

) ( s_5) e

1<n<oo

< [{gn ()} .

@+ IT) (s an )+

1<n<oo

(1-p) (1Sig£°oﬂn>

Put U = SL. Then U : E4 — E be a bounded linear operator such that
U{gn(z)} =z, x € E. Hence ({gn},U) is a Banach frame for E with respect
to E4 and with desired frame bounds. O

IA

Izl &, zeFE.

Remark 1. Positive confinedness of sequence {a, }, {3,} in R is necessary. In-

deed, if {a,} is not positively confined, then either inf «,=00r sup a,
1<n<oo 1<n<oo

is infinite. So we get either negative lower frame bounds or an infinite upper
frame bounds for the Banach frame ({g,},U). Also, if {3,} is not positively
confined, then either upper frame bound is infinite or lower frame bound in
zero. In both the cases the frame inequality is lost.

Let E =¢* and E; = E. Let ({f1.n.},51) {fin} CE*,S1:E4y— E) bea
Banach frame for E with respect to E4. Define {f>,} C E* by

fa1=fi1a
f2,2 =f1,1
f2,n = fl,n—17 n= 374757'“ s
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then there exists a reconstruction operator S, such that ({2}, S2) is a Banach
frame for F.

Define {g1,»,} and {ga2,,} in E* by

911 =0

n="Ffin n=2,3,4,...,
92,1 =0
g22=0

g2n = fl,n—la n= 3747" ..
Then, for suitable choice of A and p,
I{(fin = gim) @) HE, £ M{Sfin(@)}Es + pillzlzc € B, i=1,2
is satisfied. But there exists, in general, no reconstruction operator U : Eg — E

2
such that ({ > gi,n} U ) is a Banach frame for E. So it is natural to ask the
i=1

2
question that under what sufficient conditions, ({ 3 gi,n} U ) is a Banach
i=1

frame for E. The following theorem gives such sufficient conditions in a more
general setup.

Theorem 3.4. Forie€ Ay ={1,2,3,...,k}, let ({fin},S:) ({fin} C E*,S;:
E4 — E) be a Banach frame for E with respect to E4. Let {gin} C E* be such
that {gin(z)} € Eq, x € E, i € Agand let L : Eq — E4 be a bounded linear

operator such that L { (Z gm) (CC)} = {fpn(x)}, for some p € Ag. If there
1€ML

exist non negative constants A\, p such that
) A YTl + ke < (IS5ID 7" = D T, for some j € Ax
€A, 1€Ak

(b) H{(fin — gsn) (@)}l B < All{fzn( g, + pllelpz € B, i €A,

then there exists a reconstruction operator U such that ({ Z gl«,n} U ) s a
1€Ag
Banach frame for E with respect to E4 and with frame bounds

US;ID = [ DTl + X D ITll + ka

€A 1E€EAL
i#]

and
((HA) > I +ku> :
i€EAL
where T; is the coefficient mapping given by Tix = {fin(2)}, 2 € E, 1 € Ag.
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Proof. For each i € A, S;T; is an identity operator on E. Therefore

(3.1) lzlle = |SiTi(x)lie < 1Sill Hfin(@) e, z€E.

Also

(3.2) S {fin@}| < (Z IITiII) lzllz, z€E.
i€Ay Ey i€

Now

(&),

= [ Y {(fin = (fimn — gin)) (@)}

1EAE

2 Z {fin(@)}]| - E {(fin — 9in)(@)}
i€AK Ey4 i€AK Ey
> |{fin@}+ D {fin@} = > H(fun = gim)@)HiE, -
i€A €A,
i Eq

By using (3.1) and (3.2), we get

%))

2 | USil™ = f IMTh+A YN Tll+ ke | | llzlle, z€kE.

1€AL iEAk
i#]

Eq

Also, using (3.2), we obtain

(&),

Put U = S,L. Then U : E; — E is a bounded linear operator such that

U({(z 91'771)(5’3)}): z, z € E. Hence ({ Z gi,n} ,U) is a Banach frame
i€ Ay, i€Ag

for E with respect to E4 and with desired frame bounds. a

lzllg, z€E.

< [(HA) > Tl + ku
E,

1€A,

Remark 2. The condition (a) in Theorem 3.4 is not necessary. Indeed, if
{fin}S1){fin} C E*,S1 : E4 — E) is a normalized tight Banach frame
for E with respect to Eg, then, for fo, = gin = g2n = fin, n € N,
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2
>~ 9in = 2f1,n. So there exists a reconstruction operator U : E; — FE such
i=1

2
that <{ > gi} U > is a Banach frame for E with respect to Ey. Further, since
i=1

({f1.n},S1) is a normalized tight Banach frame, it is easy to conclude that the
condition (a) in Theorem 3.4 is not satisfied.
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