SOME RESULTS ON NON-ASSOCIATIVE ALGEBRAS

MOON-OK WANG, JIN-GU HWANG, AND KWANG-SUK LEE

ABSTRACT. We define the non-associative algebra $\overline{W(n,m,m+s)}$ and we show that it is simple. We find the non-associative algebra automorphism group $\operatorname{Aut}_{non}(\overline{W(1,0,0)})$ of $\overline{W(1,0,0)}$. Also we find that any derivation of $\overline{W(1,0,0)}$ is a scalar derivation in this paper.

1. Preliminaries

Let **N** be the set of all non-negative integers and **Z** be the set of all integers. Let **F** be a field of characteristic zero. Let \mathbf{F}^{\bullet} be the multiplicative group of non-zero elements of **F**. The non-associative algebra $\overline{W(n,m,m+s)}$ is the vector space spanned by

$$\{e^{a_1x_1}\cdots e^{a_nx_n}x_1^{i_1}\cdots x_m^{i_m}x_{m+1}^{i_{m+1}}\cdots x_{m+s}^{i_{m+s}}\partial_u|a_1,\ldots,a_n,i_1,\ldots,i_m\in\mathbf{Z},\\i_{m+1},\ldots,i_{m+s}\in\mathbf{N}\}$$

with the obvious addition and the multiplication * where ∂_u is the usual partial derivative with respect to x_u , $1 \leq u \leq \max\{n, m+s\}$ [2], [8], [9]. The non-associative algebra $\overline{W}(n,m,m+s)$ is a subalgebra of the algebra in the papers [2], [3], [8]. For an element l in an algebra A, l is full, if an ideal containing l is A. The matrix ring $M_{m+s}(\mathbf{F})$ is imbedded in the non-associative algebra $\overline{W}(n,m,m+s)$. The matrix ring $M_n(\mathbf{F})$ is not imbedded in $\overline{W}(n,0,0)$. The non-associative algebra $\overline{W}(n,0,0)$ has neither a right nor a left multiplicative identity element. Note that the definition of a non-associative algebra in this paper is a little different from the definition of the non-associative algebras in the papers [2], [8], [9], because of some results. Similarly to the non-associative algebra $\overline{W}(n,m,m+s)$, we can define the non-associative algebra $\overline{W}(n^+,0,s)$ spanned by $\{e^{a_1x_1}\cdots e^{a_nx_n}x_{n+1}^{i_{n+1}}\cdots x_{n+s}^{i_{n+s}}\partial_u|a_1,\ldots,a_n\in\mathbf{Z},i_{n+1},\ldots,i_{n+s}\in\mathbf{Z}\}$

Received January 28, 2006.

 $^{2000\} Mathematics\ Subject\ Classification.\ Primary\ 17B40,\ 17B56.$

Key words and phrases. simple, non-associative algebra, right identity, annihilator, Jacobian conjecture, derivation.

 $\mathbf{N}, 1 \leq u \leq n+m$. The non-associative algebra $\overline{W(n,m,m+s)}$ is Lie-admissible, since $\overline{W(n,m,m+s)}_{[,]}$ is a Lie algebra with respect to the commutator [,] of $\overline{W(n,m,m+s)}$. The non-associative algebra $\overline{W(n,m,m+s)}$ has idempotents.

2. Simplicity of
$$\overline{W(n,m,m+s)}$$

Even if the non-associative algebra $\overline{W(n,m,m+s)}$ has right annihilators, we have the following results.

Remark 1. An (non-associative, Lie, or associative) algebra A is simple if and only if every element of the (non-associative, Lie, or associative) algebra A is full.

Lemma 1. For any ∂_u , $1 \leq u \leq m+s$, in the non-associative algebra $\overline{W(n,m,m+s)}$, ∂_u is full.

Proof. Let I be a non-zero ideal of the non-associative algebra $\overline{W(n,m,m+s)}$ which contains ∂_u in the lemma. For any basis element $e^{a_1x_1}\cdots e^{a_nx_n}\partial_v$ of $\overline{W(n,m,m+s)}$ with $a_u \neq 0$,

$$\partial_u * e^{a_1 x_1} \cdots e^{a_n x_n} \partial_v = a_u e^{a_1 x_1} \cdots e^{a_n x_n} \partial_v \in I$$

This implies that by appropriate inductions on i_1, \ldots, i_{m+s} of $e^{a_1x_1} \cdots e^{a_nx_n} x_1^{i_1} \cdots x_{m+s}^{i_{m+s}} \partial_v$, we can prove that $e^{a_1x_1} \cdots e^{a_nx_n} x_1^{i_1} \cdots x_{m+s}^{i_{m+s}} \partial_v \in I$. This implies that $\overline{W(n,m,m+s)} \subset I$, i.e., $\overline{W(n,m,m+s)} = I$. This implies that ∂_u is full. Therefore we have proven the lemma.

Theorem 1. The non-associative algebra $\overline{W(n,m,m+s)}$ is simple.

Proof. Let I be a non-zero ideal of the non-associative algebra

$$\overline{W(n,m,m+s)}$$
.

Without loss of generality, we can assume that $n \leq m + s$. By Lemma 1, we know that ∂_u , $1 \leq u \leq m + n$, is full. It is standard to prove that $\partial_u \in I$. By Remark 1 and Lemma 1, this completes the proof of the theorem.

Corollary 1. The non-associative algebra $\overline{W(n,m,m+s)}$ is simple.

Proof. The proof of the corollary is straightforward by Theorem 1. Thus the proof is omitted. \Box

Theorem 2. The Lie algebra $\overline{W(n,m,m+s)}_{[,]}$ is simple.

Proof. Since every element of the Lie algebra $\overline{W(n,m,m+s)}_{[,]}$ is full, the proof of the theorem is straightforward by Theorem 1. So let omit it.

Corollary 2. The Lie algebras $\overline{W(n^+,0,s)}_{[.]}$ and $\overline{W(0,m,m+s)}_{[.]}$ are simple.

Proof. The proof of the corollary is straightforward by Theorem 2, so omitted.

The Lie algebra $\overline{W(n,m,m+s)}_{[,]}$ is called the Witt type Lie algebra [12]. The Lie algebra $\overline{W(1,0,0)}_{[,]}$ is the well known centerless Virasoro algebra [7]. It is easy to prove that the non-associative algebra $\overline{W(n^+,0,s)}$ is simple.

3. Automorphism group $Aut_{non}(\overline{W(1,0,0)})$

Note that by Corollary 1, the non-associative algebra $\overline{W(1,0,0)}$ span-ned by $\{e^{ax}\partial|a\in\mathbf{Z}\}$ is simple.

Example 1. The Lie algebra $sl_2(\mathbf{F})$ is isomorphic to the Lie subalgebra of $\overline{W(0,1,0)}_{[,]}$ (resp. $\overline{W(1,0,0)}_{[,]}$) spanned by $\{x^{k+2}\partial,x\partial,x^{-k}\partial\}$ (resp. $\{e^{-ax}\partial,\partial,e^{ax}\partial\}$) where $k,a\in\mathbf{N}$.

Proposition 1. For any non-associative algebra endomorphism θ of $\overline{W(1,0,0)}$, if θ is non-zero, then θ is injective.

Proof. Let θ be a non-associative algebra endomorphism θ of

$$\overline{W(1,0,0)}$$
.

 $\operatorname{Ker}(\theta)$ is an ideal of $\overline{W(1,0,0)}$. By Corollary 1, either $\operatorname{Ker}(\theta) = 0$ holds or $\operatorname{Ker}(\theta) = \overline{W(1,0,0)}$ holds. Since θ is not the zero map, $\operatorname{Ker}(\theta) = 0$. This implies that θ is injective. So we have proven the proposition.

Note 1. For any basis element $e^{ax}\partial$ of $\overline{W(1,0,0)}$, if we define **F**-linear maps θ_{+,d_1} and θ_{-,d_2} of $\overline{W(1,0,0)}$), as follows:

$$\theta_{+,d_1}(e^{(k)x}\partial) = d_1^k e^{(k)x}\partial$$

and

$$\theta_{-,d_2}(e^{kx}\partial) = d_2^k e^{-kx}\partial$$

then θ_{+,d_1} and θ_{-,d_2} can be linearly extended to non-associative algebra automorphisms of $\overline{W(1,0,0)}$ where $d_1,d_2\in \mathbf{F}^{\bullet}$.

Lemma 2. For any non-associative algebra automorphism θ of

$$\overline{W(1,0,0)}$$
,

 $\theta(\partial) = c\partial$ holds where c is a non-zero scalar.

Proof. Let θ be the non-associative algebra automorphism θ of

$$\overline{W(1,0,0)}$$

in the lemma. Since ∂ is a basis element of the right annihilator of $\overline{W(1,0,0)}$, ∂ is invariant under any automorphism of $\overline{W(1,0,0)}$. This implies that $\theta(\partial)=c\partial$ holds where c is a non-zero scalar.

Lemma 3. For any θ in the non-associative algebra automorphism group $\operatorname{Aut}_{non}(\overline{W(1,0,0)})$ of $\overline{W(1,0,0)}$, θ is either θ_{+,d_1} or θ_{-,d_2} in Note 1 where $d_1,d_2 \in \mathbf{F}^{\bullet}$.

Proof. Let θ be the non-associative algebra automorphism of

$$\overline{W(1,0,0)}$$

in the lemma. By Lemma 2, $\theta(\partial) = c\partial$ holds where c is a non-zero scalar. By Lemma 2 and since ∂ is a left identity of $e^x \partial$, we have that

(1)
$$c\partial * \theta(e^x \partial) = \theta(e^x \partial).$$

This implies that $\theta(e^x\partial)$ can be written as follows:

(2)
$$\theta(e^x \partial) = C(b_1)e^{b_1 x} \partial + \dots + C(b_t)e^{b_t x} \partial,$$

where $C(b_1), \ldots, C(b_t) \in \mathbf{F}$ and $b_1 > \cdots > b_t$. By (1) and (2), we have that $cb_1 = 1$. This implies that either $c = b_1 = 1$ holds or $c = b_1 = -1$ holds.

Case I. Let us assume that $c = b_1 = 1$ holds. Let us put $\theta(\partial) = \partial$ and $\theta(e^x \partial) = d_1 e^x \partial$ where $d_1 \in \mathbf{F}^{\bullet}$. By $\theta(e^{-x} \partial * e^x \partial) = \partial$, we have that $\theta(e^{-x} \partial) * d_1 e^x \partial = \partial$. This implies that

(3)
$$\theta(e^{-x}\partial) = d_1^{-1}e^{-x}\partial.$$

By $\theta(e^x \partial * e^x \partial) = e^{2x} \partial$, we have that

(4)
$$\theta(e^{2x}\partial) = d_1^2 e^{2x}\partial.$$

By (3) and (4), we may assume that $\theta(e^{kx}\partial) = d_1^k e^{kx}\partial$ holds by induction on $k \in \mathbb{N}$ of $e^{kx}\partial$. By $\theta(e^x\partial * e^{kx}\partial) = ke^{(k+1)x}\partial$, we have that $\theta(e^{(k+1)x}\partial) = d_1^{k+1}e^{(k+1)x}\partial$. This proves that $\theta(e^{kx}\partial) = d_1^k e^{kx}\partial$ holds for any $k \in \mathbb{N}$. Symmetrically, we can prove that

(5)
$$\theta(e^{kx}\partial) = d_1^k e^{kx}\partial$$

holds for any negative integer k by (3). This implies that θ is the non-associative algebra automorphism θ_{+,d_1} which is defined in Note 1.

Case II. Let us assume that c = -1 and $b_1 = -1$ hold. Let us put $\theta(\partial) = -\partial$ and $\theta(e^x \partial) = d_2 e^{-x} \partial$ where $d_2 \in \mathbf{F}^{\bullet}$. By $\theta(e^x \partial * e^x \partial) = e^{2x} \partial$, we have that

(6)
$$\theta(e^{2x}\partial) = d_2^2 e^{-2x}\partial.$$

By induction on $k \in \mathbb{N}$ of $e^{kx}\partial$, we can prove that

(7)
$$\theta(e^{kx}\partial) = d_2^k e^{-kx}\partial.$$

By $\theta(e^{-x}\partial * e^x\partial) = \partial$, we have that $\theta(e^{-x}\partial) * d_2e^{-x}\partial) = -\partial$. This implies that $\theta(e^{-x}\partial) = d_2^{-1}e^x\partial$. By induction on $k \in \mathbb{N}$ of $e^{kx}\partial$, we can prove that

(8)
$$\theta(e^{-kx}\partial) = d_2^{-k}e^{kx}\partial.$$

This implies that θ is the non-associative algebra automorphism θ_{-,d_2} which is defined in Note 1. By Case I and Case II, we have proven the lemma.

Theorem 3. The non-associative algebra automorphism group

$$\operatorname{Aut}_{non}(\overline{W(1,0,0)})$$

of $\overline{W(1,0,0)}$ is generated by θ_{+,d_1} and θ_{-,d_2} which are defined in Note 1 where $d_1,d_2 \in \mathbf{F}^{\bullet}$.

Proof. Let θ be the non-associative algebra automorphism of

$$\overline{W(1,0,0)}$$
.

By Lemma 3, θ is either θ_{+,d_1} or θ_{-,d_2} where $d_1,d_2 \in \mathbf{F}^{\bullet}$. So

$$\operatorname{Aut}_{non}(\overline{W(1,0,0)})$$

of $\overline{W(1,0,0)}$ is generated by θ_{+,d_1} and θ_{-,d_2} . Therefore we have proven the theorem.

Corollary 3. The non-associative algebra automorphism group

$$\operatorname{Aut}_{non}(\overline{W(1,0,0)})$$

of the non-associative algebra $\overline{W(1,0,0)}$ is a non-abelian group.

Proof. By Theorem 3, the non-associative algebra automorphism group

$$\operatorname{Aut}_{non}(\overline{W(1,0,0)})$$

of the non-associative algebra $\overline{W(1,0,0)}$ is generated by θ_{+,d_1} and θ_{-,d_2} where $d_1,d_2 \in \mathbf{F}^{\bullet}$. Thus it is enough to check that $\theta_{+,d_1} \circ \theta_{-,d_2} \neq \theta_{-,d_2} \circ \theta_{+,d_1}$ where \circ is the composition of the non-associative algebra automorphisms θ_{+,d_1} and θ_{-,d_2} . But it is trivial to check the inequality by taking some basis element of the non-associative algebra $\overline{W(1,0,0)}$. So let omit the remaining steps of its proof.

Proposition 2. The non-associative algebra $\overline{W(1,0,0)}$ is not isomorphic to the non-associative algebra $\overline{W(0,1,0)}$ as non-associative algebras.

Proof. Since the non-associative algebra $\overline{W(0,1,0)}$ has a right identity and the non-associative algebra $\overline{W(1,0,0)}$ does not have a right identity, the proof of the proposition is straightforward. So it is omitted.

Proposition 3. The Lie algebra $\overline{W(n^+,0,n+s)}_{[,]}$ is isomorphic to the Lie algebra $\overline{W(0,n,n+s)}_{[,]}$ as Lie algebras. The non-associative algebra

$$\overline{W(n^+,0,n+s)}$$

is not isomorphic to the non-associative algebra $\overline{W(0,n,n+s)}$ as non-associative algebras.

Proof. It is standard to find isomorphisms between appropriate algebras, so the proof of the proposition is omitted. \Box

Proposition 4. The Lie algebra $\overline{W(1,0,0)}_{[,]}$ (resp. the non-associa-tive algebra $\overline{W(1,1,0)}_{[,]}$) does not hold its Jacobian conjecture.

Proof. It is easy to define a non-zero endomorphism θ of $\overline{W(1,0,0)}_{[,]}$ (resp. $\overline{W(1,1,0)}_{[,]}$) which is not surjective. This completes its proof.

Proposition 3 shows that there are non-isomorphic two non-associa-tive algebras whose corresponding Lie algebras (i.e., using the commutators of them) are isomorphic. This fact is one of the reasons to study non-associative algebras.

4. Derivations of $\overline{W(1,0,0)}$

Note that the **F**-algebra $\mathbf{F}[x,x^{-1}]$ is isomorphic to the **F**-algebra $\mathbf{F}[e^{\pm x}]$ as **F**-algebras. Let A be an **F**-algebra. An additive **F**-map D from A to itself is a derivation if $D(l_1 * l_2) = D(l_1) * l_2 + l_1 * D(l_2)$ for any $l_1, l_2 \in A$.

Note 2. For any basis element $e^{kx}\partial$ of the non-associative algebra $\overline{W(1,0,0)}$, if we define an **F**-additive linear map D_c of the non-associative algebra $\overline{W(1,0,0)}$ as follows:

$$D_c(e^{kx}\partial) = cke^{kx}\partial$$

then D_c can be linearly extended to a derivation of the non-associative algebra $\overline{W(1,0,0)}$ where $c \in \mathbf{F}$.

Lemma 4. For any derivation D of the non-associative algebra

$$\overline{W(1,0,0)}$$

if $D(\partial) = 0$, then D is the derivation D_c which is defined in Note 2.

Proof. Let D be the derivation of the non-associative algebra

$$\overline{W(1,0,0)}$$

in the lemma. Since ∂ is a left identity of $e^x \partial$, we have that $D(\partial) * e^x \partial + \partial * D(e^x \partial) = D(e^x \partial)$, i.e., $\partial * D(e^x \partial) = D(e^x \partial)$ by assumption. This implies that

$$(9) D(e^x \partial) = ce^x \partial$$

for $c \in \mathbf{F}$. We have two cases c = 0 or $c \neq 0$.

Case I. Let us assume that c=0. By (9), we have that $D(e^x\partial)=0$. By $D(e^x\partial*e^x\partial)=D(e^{2x}\partial)$, we have that $D(e^x\partial)*e^x\partial+e^x\partial+e^x\partial*D(e^x\partial)=D(e^{2x}\partial)$. This implies that $D(e^{2x}\partial)=0$. By induction on $k\in \mathbb{N}$ of $e^{kx}\partial$, we can prove that

$$(10) D(e^{kx}\partial) = 0.$$

For any $k \in \mathbb{N}$, we have that $D(e^{-kx}\partial) * e^{(k+1)x}\partial = 0$ by (10). Since the left annihilator of $e^{(k+1)x}\partial$ is zero, this implies that $D(e^{kx}\partial) = 0$ holds for any negative integers. This implies that D is the zero map of the non-associative algebra $\overline{W(1,0,0)}$.

Case II. Let us assume that $c \neq 0$. By (9), we have that $D(e^x\partial) = ce^x\partial$. By $D(e^x\partial * e^x\partial) = D(e^{2x}\partial)$, we also have that $ce^x\partial * e^x\partial + e^x\partial * ce^x\partial = D(e^{2x}\partial)$. This implies that $D(e^{2x}\partial) = 2ce^{2x}\partial$. By induction on $k \in \mathbb{N}$ of $e^{kx}\partial$, we can prove that

$$(11) D(e^{kx}\partial) = kce^{kx}\partial.$$

By $D(e^{-x}\partial *e^x\partial) = D(\partial)$, we have that $D(e^{-x}\partial) *e^x\partial + e^{-x}\partial *D(e^x\partial) = 0$. This implies that $D(e^{-x}\partial) = -ce^{-x}\partial$. Similarly to (11), by induction on $-k \in \mathbb{N}$ of $e^{kx}\partial$, we can also prove that

$$(12) D(e^{kx}\partial) = kce^{kx}\partial.$$

This implies that D is the derivation D_c in Note 2. Therefore we have proven the lemma.

Theorem 4. For any derivation D of the non-associative algebra $\overline{W(1,0,0)}$, $D = \sum_{c \in \mathbf{F}} D_c$ where D_c is the derivation which is defined in Note 2.

Proof. Let D be the derivation of the non-associative algebra

$$\overline{W(1,0,0)}$$

in the theorem. Since ∂ annihilates itself, we have that $D(\partial) * \partial + \partial * D(\partial) = 0$. This implies that $D(\partial) = c_1 \partial$ for $c_1 \in \mathbf{F}$. It is easy to prove that $c_1 = 0$. So by Lemma 4, D is D_c for $c \in \mathbf{F}$. This implies that $D = \sum_{c \in \mathbf{F}} D_c$ where D_c is the derivation which is defined in Note 2. Therefore we have proven theorem. \square

By Theorem 4, we know that every derivation the non-associative algebra $\overline{W(1,0,0)}$ is a scalar derivation. All the derivations of the non-associative algebras $\overline{WN_{0,0,1}}_r$ are found in the papers [1], [10], [11] and please refer to the definitions of the algebras $\overline{WN_{0,0,1}}_r$ and $\overline{WN_{n,0,0}}_r$ in the papers [2], [3]. Thus it is an interesting problem to find all the derivations of the non-associative algebras $\overline{WN_{n,0,0}}_r$. Also it is an interesting problem to find the non-associative algebra automorphism group $\operatorname{Aut}_{non}(\overline{WN_{n,0,0}}_r)$ of the non-associative algebras $\overline{WN_{n,0,0}}_r$ [1], [6], [9].

References

- [1] H. Mohammad Ahmadi, K.-B. Nam, and J. Pakianathan, Lie admissible non-associative algebras, Algebra Colloq. 12 (2005), no. 1, 113-120.
- [2] S. H. Choi and K.-B. Nam, The derivation of a restricted Weyl type non-associative algebra, Hadronic J. 28 (2005), no. 3, 287-295.
- [3] ______, Derivation of symmetric non-associative algebra I, Algebras Groups Geom. 22 (2005), no. 3, 341–352.
- [4] T. Ikeda, N. Kawamoto, and K.-B. Nam, A class of simple subalgebras of Generalized W algebras, Proceedings of the International Conference in 1998 at Pusan (Eds. A. C. Kim), Walter de Gruyter Gmbh Co. KG, 2000, 189–202.
- [5] V. G. Kac, Description of filtered Lie algebra with which graded Lie algebras of Cartan type are associated, Izv. Akad. Nauk SSSR Ser. Mat. 38 (1974), 800–834.
- [6] N. Kawamoto, A. Mitsukawa, K.-B. Nam, and M.-O. Wang, The automorphisms of generalized Witt type Lie algebras, J. Lie Theory 13 (2003), no. 2, 573-578.

- [7] I. Kaplansky, The Virasoro algebra, Comm. Math. Phys. 86 (1982), no. 1, 49-54.
- [8] K.-B. Nam, On Some Non-Associative Algebras Using Additive Groups, Southeast Asian Bull. Math. 27 (2003), no. 3, 493-500.
- [9] K.-B. Nam and M.-O. Wang, Notes on some non-associative algebras, J. Appl. Algebra Discrete Struct. 1 (2003), no. 3, 159-164.
- [10] K.-B. Nam, Y. Kim, and M.-O. Wang, Weyl-type non-associative algebras I, IMCC Proceedings, SAS Publishers, 2005, 147-155.
- [11] K.-B. Nam and S. H. Choi, On the derivations of non-associative Weyl-type algebras, Appear, Southeast Asian Bull. Math., 2005.
- [12] A. N. Rudakov, Automorphism groups of infinite-dimensional simple Lie algebras, Izv. Akad. Nauk SSSR Ser. Mat. 33 (1969), 748-764.
- [13] R. D. Schafer, An Introduction to Nonassociative Algebras, Dover Publications, Inc., New York, 1995.

MOON-OK WANG
DEPARTMENT OF MATHEMATICS
HANYANG UNIVERSITY
KYUNGGI 425-791, KOREA
E-mail address: wang@hanyang.ac.kr

JIN-GU HWANG
DEPARTMENT OF MATHEMATICS
HANYANG UNIVERSITY
KYUNGGI 425-791, KOREA
E-mail address: jgbass77@ihanyang.ac.kr

KWANG-SUK LEE
DEPARTMENT OF MATHEMATICS
HANYANG UNIVERSITY
KYUNGGI 425-791, KOREA

 $E ext{-}mail\ address: mathore96@ihanyang.ac.kr}$