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A LOWER BOUND FOR AREA OF COMPACT SINGULAR
SURFACES OF NONPOSITIVE CURVATURE

YounGg Do CHAI AND DOOHANN LEE

ABSTRACT. In this paper, we obtain some lower bounds for area of non-
simply connected compact singular surfaces of nonpositive curvature. One
inequality involves systole and area of the surface.

1. Introduction

A CAT(k)-space is a singular metric space of curvature bounded above by k
in the sense of Alexandrov [1]. The systole is, by definition, the infimum of the
lengths of closed curves, which are not homotopic to zero, in a CAT(k)-space
X, and we denote it by sys(X). sys(X) is realized by a closed geodesic, and
this closed geodesic of minimal length is called a systolic in X. In this paper,
we obtain geometric inequalities giving lower bound for the area of nonsim-
ply connected compact singular surface of nonpositive curvature by terms of
sys(X).

Related with sys(X) to area of a 2-dimensional regular surface X, the first
result is the Loewner’s inequality which states for the torus T2, Area(T?)
> ?sys2 (T?), for every metric on T2; equality holds if and only if T is a flat
torus obtained from a hexagonal lattice. For the projective plane RP2, Pu [8]
proved Area(RP?) > 2sys?(RP?), for every metric on RP?; equality holds if
and only if RP? has the elliptic metric. For the Klein bottle KB, Bavard [2]
obtained the optimal inequality that Area(KB) > ¥3y32 (KB). Also it is
known that for an oriented regular surface X, Area(X) > %sys2 (X) and for
a nonoriented surface X, Area(X) > lsys?(X) [3], [6]. In [5], Gromov gave
a result that the area of a nonsimply connected regular surface X is not less
than the area of a ball of radius fsys(X). In this paper, we first show that
Gromov's result still holds for nonsimply connected compact singular surfaces
of nonpositive curvature, that is to say,
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Theorem 1.1. For a nonsimply connected compact singular surface X of non-
positive curvature, we have

H(X) > Joys*(X),
where H denotes 2-dimensional Hausdorff measure.
We also obtain another lower bound for area of such a surface as follows:

Theorem 1.2. Let X be a nonsimply connected compact singular surface of
nonpositive curvature, and let v be a unit speed closed geodesic in X. We
assume that an e-neighborhood N(vy,¢) of v has a property that the metric
projection Ty : N(v,€) — ~v is well-defined. Then we have

H(X) > H(N(v,€)) 2 2¢£(7),
where £(y) denotes the length of .

2. Singular surfaces of nonpositive curvature

Let (X,d) be an intrinsic metric space, that is to say, for any p,q in the
metric space X,

d(p,q) = inf £(),

where the infimum is taken over all continuous curves v joining p and ¢, and
the length £(v) of a continuous curve « : [a,b] — X is

n—-1
£(v) = sup Z d(pi, Pi+1)
i=1
where pi1,pa,...,pn is an arbitrary sequence of points of v numbered in the

order of their position on the curve, and the supremum is taken over all such
sequence of points. A continuous curve v : [a,b] — X is called a unit speed
geodesic in X if each t € [a, b] has an open neighborhood V' C [a, b] such that
d(y(t1),7(t2)) = |t1to] for all t1,t2 € V. If d(vy(t1),v(t2)) = |t1te] for all
t1,t2 € [a,b], then a geodesic v : [a,b] — X is called a minimizer or a shortest
curve joining y(a) and ~(b). A subset U C X is said to be convex if any
two points in U are joined by a minimizer of X lying inside UU. A triangle
A = (01,02,03) in X is a set consisting of three minimizers o1, 02,03 called
the sides, which are pairwisely joining three points called the vertices.

For a triangle A = (01,02,03) in X, a triangle A = (51,82,63) in 2-
dimensional Euclidean plane R? with the usual metric dy is called a comparison
triangle for A if £(5;) = €(0;), 1 < i < 3. A triangle A in X is said to be
0-thin if

d(z,y) < do(Z,7),
for all points ,y on sides of A and the corresponding points Z, i on the sides
of the comparison triangle A ¢ R2. An intrinsic metric space X is called a
CAT(0)-space, or a space of nonpositive curvature, if each point p € X has a
convex domain Ry such that every triangle A in Ry is 0-thin. From now on,
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a singular surface of nonpositive curvature means a 2-dimensional topological
manifold endowed with an intrinsic metric of nonpositive curvature in the sense
of Alexandrov.

For § > 0, let 71,2 : [0,8] — X be a pair of unit speed geodesics emanating
from a point p in a complete CAT(0)-space X. For s,t € (0,6] let A,;, C R? be
the comparison triangle for the triangle Ay = (p,v1(s),v2(t)). Then the angle
between ~; and v, is defined by

Z(y1,72) = 81}1_1}0 afs,t),

where a(s,t) is the angle of A, at p in R

Let C be a convex closed subset in a complete simply connected singular
surface X of nonpositive curvature. Then the metric projection 7¢ : X — C
defined by the closest point m¢(p) € C to the point p € X is well defined in
X, and the unique point 7o (p) € C is called the footpoint of p on C. Also,
we : X — C is a 1-Lipschitz retraction on X, and for the projective geodesic
segment z 7o (x) and a geodesic segment no(x) y contained in C, we have

Linc(z)x, nc(x)y) >

R

2

for any y € C 4].
In what follows, we denote by H 2-dimensional Hausdorff measure in a metric
space and by L Lebesgue measure on R?, respectively.

3. A lower bound for area of singular spaces of nonpositive
curvature

Let r, be the injectivity radius of p € X, and suppose that a metric ball
B(p,rp) is contained in a convex domain of X. Then it is known the following
area comparison theorem for balls in a singular surface of nonpositive curvature

7).

Proposition 3.1. Let (M2,d) be a singular surface of nonpositive curvature.
Then

H(B(p,rp)) 2 L(Bo(P, 7)),

where B(p,rp) is an open metric ball centered at p of the injectivity radius rp
in M? and Bo(B,T,) is an open ball centered at € R? of radius r), in R?.

From now on, we shall identify a unit speed curve v with its image ([0, £(-y)])
C X. Now we apply Proposition 3.1 to obtain a lower bound of area of a
nonsimply connected singular surfaces of nonpositive curvature.

Lemma 3.1. Let v be a shortest closed geodesic in a singular surface X of
nonpositive curvature. For p € v, any point q in the metric ball B(p, £(v)/2) s
joined to p by the unique minimizer.
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Proof. Suppose two points p and ¢ are joined by two minimizers o, and o».
Since a minimizer is a convex subset of X, any point a in o; has the unique
footpoint 7,,(a) € oa2. If 7,,(a) is either p or ¢ for all @ € oy, then the
concatenation o1 x o4 1 is a closed geodesic with length less than £(vy). This is
contrary to the assumption.

On the other hand, if 7,,(a) is neither p nor ¢ for some a € o1, then the
angle Z(am,,(a),pms,(a)) between two geodesics am,,(a) and p7s,(a) is not
less than 7. Similarly, we have

é(a 7T0'2 (a)7 q7T02 (a)) Z

This implies that either the triangle Apan,,(a) or the triangle Agam,, (a)
has an interior angle more than 7, which is a contradiction. Hence, we prove
the lemma. (|

N.l 3

Theorem 3.1. Let X be a nonsimply connected compact singular surface of
nonpositive curvature. Then we have

H(X)> Zsys2(X) )

Proof. Let 7 be a systolic in X. Then it is obvious that, for any point p € ~, the
metric ball B(p, 2(2—'7)) does not contain 7. Also, the lemma above implies that
B(p, 13(—272) is contractible. Hence, by the generalized Hadamard-Cartan theorem
for singular space, the ball B(p, @) does not contain any closed geodesic, and
a pair of two points in B(p, ﬁ;—)) is joined by the unique minimizer. This
implies that the ball B(p, L;)) is homeomorphic a topological disc, and it is of
nonpositive curvature. Hence
1(x) > BB, )

Since the Hausdorff measure H(B(p, %ﬂ)) of the ball B(p, @) is not less
than the Lebesgue measure of a corresponding ball in 2-dimensional Euclidean
space by Proposition 3.1, we obtain that

1Bk, "2 > Tuy.
0

The following is another lower bound for area of a nonsimply connected
compact singular surface of nonpositive curvature.

Theorem 3.2. Let (X, dx) be a nonsimply connected compact singular surface
of nonpositive curvature. Let v be a unit speed closed geodesic in X, and we
denote the length of v by £(y). We assume that an e-neighborhood N(v,€) of
v has a property that the metric projection 7, : N(v,€) — 7 is well-defined.
Then we have

H(X) 2 H(N(v,¢)) > 2e(y).
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Proof. Divide the closed geodesic v by two parts v1 = «v I[o 1y and v =
2
y |[ 1) 4y Then e-neighborhood N(7,¢€) of 7 is the union of e-neighborhood
3y
N(yi,¢e) of v and e-neighborhood N(vz,¢) of y2. Also, for each ¢ = 1,2, the
e-neighborhood N(v;,¢€) of ; consists of two connected domains Nt (v;, ) and
N~ (i, €) such that N*(v;,¢€) " N~ (v;,€) = ;. The four domains are simply
connected singular surfaces of nonpositive curvature. From the assumption, for
x € N(v;,¢), there exists a unique footpoint .., (z) € ;.
Define four mappings

FE N (e) = [0, 82 x 0,6)(c )

and
E7 N~ (yi,e) — [0, E(_;Z] x [0,€)(C R?)
by
Fi+($) = (dX('Y(O) s Ty, (.’IZ)) P dX(x77r‘7i (:L‘)) )a
and

Fi_ (117) = (dX(’Y(D) > oy (.’17)) y dx (CC, Moy, (:C)) )a
which are well-defined by the assumption.

Choose z,y € NT(y1,¢). Then both z and y have their unique footpoints
7y, (z) and 7y, (y) in 1, respectively. By the convexity of distance function
between geodesics, dx(z,y) > do(Fy (z), F; (y)). Therefore, F;" is nonex-
panding, and by Kolmogorov’s principle, we obtain that

BN+ (n,9)) = L0, 22 x 0.)).

In a similar way, we obtain that

14
HIN=(n.) 2 L0, 2] x 0,6,
and they induce the desired inequality. d
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