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ON EXACT CONVERGENCE RATE OF STRONG
NUMERICAL SCHEMES FOR STOCHASTIC DIFFERENTIAL
EQUATIONS

Dougu Nam

ABSTRACT. We propose a simple and intuitive method to derive the exact
convergence rate of global Lo-norm error for strong numerical approxi-
mation of stochastic differential equations the result of which has been
reported by Hofmann and Miiller-Gronbach (2004). We conclude that
any strong numerical scheme of order v > 1/2 has the same optimal
convergence rate for this error. The method clearly reveals the struc-
ture of global Ly-norm error and is similarly applicable for evaluating the
convergence rate of global uniform approximations.

1. Introduction

Let us consider a scalar diffusion process X; satisfying the following stochas-
tic differential equation

(1) dXt = a(t,Xt)dt—l—a(t, Xt)th

with 1-dimensional standard Brownian motion Wy, ¢ > 0 and the continuously
differentiable coeflicient functions a and b satisfying the conditions

(2) la(t, )| + |o(t,z)| < K(1+]z]),
3) la(s,2) — a(t, 2)| + fo(s,2) — o (t,z)| < K (1 +[al)|s — t|"/2,
for some constant K > 0.
For time discrete strong approximation of (1) on the unit interval [0,1],
several different notions of errors were analyzed in the literature. The most

commonly considered one was the mean square error (MSE for short) at a time

point. By using stochastic Ito-Taylor expansion, we can construct Ito- Taylor
approximation

(4) Y = Z Ia[foe(Tnt,Ynt)]Tnt,t’
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where n; is the maximum discretization point less than ¢, « is multi index,
A, is some hierarchical index set for strong order v and I, denotes multiple
stochastic integral for the index a - see [6] for detailed explanation of notations,
and this process has the uniform mean square convergence order v, i.e.,

2
(5) [B( sup |X, —Ytl"’)]l/ < K(1+ E|Xo*) 67,
0<t<1

where § is the maximum step-size - see also [6]. But ¥; is not implementable in
practice since the full information of W; is not available. We can implement Y;
only on {7x}1<k<n, because Y;, requires only finite numbers of information of
W} on each subinterval (7x,7k11), k= 1,2,...,n, i.e., some multiple stochastic
integrals of Wy . Usually, we use f/}, the linear interpolation of ¥; at the points
{mk} 1<k<n, for numerical implementation. Therefore, the error analyses for Y;
are practically important. For the last decade, the global Le-norm error for Y
defined by

(6) e(x,7) = | /0 ' B(x, - fft)?dt]l/ ’

was analyzed intensively - see 1], [2], [3], [4], [8], and [5]. See also [7] for the
global uniform error analysis. We denote e(Y) := e(X,Y).

In Proposition 1 of [4], the exact convergence rate of equidistant Platen-
Wagner order 1.5 strong scheme Xﬁq“i was evaluated w.r.t. the global Ly-norm
error (6);
™) lim n'/? - e(R0™) = 014/ 8,

n-—00

where
) 1 1/2
Ceai — [ / E[o?(t, X,)] dt] ,
0

which was not better than Milstein scheme - see [3]. In [3] and [4], the Ito-
Taylor approximation Y; (4) was used in their error analyses, but we provide a
much simpler proof for a generalized result. We use the linear interpolation of
X instead of Y; and prove that any strong order v (> 1/2) numerical scheme
has the same convergence rate as (7) w.r.t. the error (6) asymptotically. We
note that our result was lately reported in Theorem 2 of [5], but we show an
independent derivation, the idea of which will also be useful in the analyses of
other types of numerical errors, e.g., global uniform error [7].

2. Evaluation of the convergence rate

For T = [0,1], consider the equidistant discretization 0 =t < t; < --- <
t, =1, where t; =i/n, i=1,2,...,n. The equation (1) can be rewritten as

¢ ¢
(8) X=X, -I-/ a(s, Xs)ds +/ o(s, Xs)dW,
tm tm
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for tp, <t < tm41. Let X be the linear interpolation of X at the discretization
nodes {ti}lgigns i.e.,

- 1
9) K= (b= )X, + (t ~tm) X
b —tm
t—tm tmta 28]
=X, + [——} [/ a(s, X,)ds + U(S,Xs)dWs] .
Lt —Em t tm
We let
t tmtl
Ay, = / a(s, X,)ds, Al = / a(s, X;)ds,
tm t

t tnp1
B, = / o(s, Xs)dWs, B = / a(s, Xs)dWs,
tm t

and denote A,,, B,,, A, and B, the integrals with locally freezed inte-
grands, i.e., we replace the integral time s to t,,, for A,,, Bm, A.,, and Bj,.
Let K be an unspecified positive constant.

n—1l ot pt ) 1/2
Lemma 1. (a)[Z/ / EI:O'(S,XS)—O‘(tm,Xtm)] dsdt} < Kn~t
m=1 tm tm
Nl et pten 9 1/2
(b) [Z/ / E|:G(37Xs)_0<tm,Xtm):| dsdt] SKTL_l
m=1 tm t

n—1 Lontt 1/2
(©) [Z / E(|Bu| - |BL]] dt
m=1 m

<K n=3/4,
Proof. It is easy to prove (a) and (b) using the coefficient conditions (2) and
(3). The left hand side of (c) becomes

n—1 Lot
> [ BB B, @
m=1 tm

n—1 tonta 1/2
— 2
> / E[(|Bnl"?- (|BL,|M2— |BL, V%) ]dt]
m=1
n—1 tontl _ _ 5 1/2
+[Z / E[(|BL, [ (1Bm|"2 = |Bo|'/?)) 1dt} < En~%/4,
m=1vtm

1/2

<

Note that E[B,, - B.,] = 0. The last inequality in the above line is also proved

easily by using the inequality |/]a| —+/|b| | < y/la—b| for a, b € R, Holder’s
inequality, Ito’s isometry, and the coefficient conditions (2) and (3). O
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Let us denote

n—1 tont1 1/2
[ fmllza = [Z / E(fm(t))2dt} _
m=0"tm

The terms for the drift coefficients are easily estimated as follows:
Lemma 2.

|Amllz, < Kn=3/?

47|z, < Kn=3/2,

We first estimate the error for the linear interpolation process X.

Lemma 3. Let X™ be the interpolation process (9) defined on the equi-distant
time points {i/n}1<i<n. Then
lim n!/?.e(X™) = C°1%/\/6.

n— 00

Proof. Let C(t) := (tmrr — t)/(tmas —tm), and D(t) := (£ — tm)/(Emp —tm).
Subtracting (9) from (8), we have

X, = X = C(t) - Am — D(t) - &}, + O(t) - Bm = D(t) - By,
and since |C(t)| < 1, and |D(¢)| < 1, we have
e(X™) < ||[(C(H)Bm)* + (D(t)Br)*] *|I1a
+ 1B = Brl|z, + [|Bin = Brallzs + (B - Br)Y 2|l
+ 1 AmllL, + | Al »

1/2

and

e(X™) > ||[(C(t)Bum)* + (D) Bin)?]) I 1,
~ 1B = Bumllza = 1Bl = Binllza = 1(Bum - Bin) 21,
~[|AmllLs — 14z, -

By applying Ito’s isometry, we obtain

/ T BI(C) Ba)? + (D) Bl dt

Bt X [
© (tmg1 — tm) /t (tms1 — t)(t — tm)dt

(tm+1 - tm)E[02 (tm’ Xtm )],

m

[« N
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and
1[(CH)Bwm) + (D) B)* 1,
1/2

1 n—1
=7 > Elo*(tm, Xy, -0 M2 o072
m=0

Hence, we have
limsup nt/2 . e(X™) < ¢evi/\/6,

n—o00
lim inf n'/2 . e(X’(n)) > Cequi/\/é,
n—00

by Lemma 1 and Lemma 2. O

Remark 1. Every numerical scheme aims to approximate X on the discretiza-
tion points. But, Lemma 3 addresses X still has a positive error in the global
Ly approximation. The error e(X) is the essential part of this L? approxima-
tions and the error caused by numerical scheme is negligible if we have the

condition that v > 1/2 for the uniform MSE, as one will see in the next main
result.

Theorem 1. Let Y™ be a numerical scheme of strong order v > 1/2 for
uniform MSE defined on the time points {i/n}1<i<n. Then

lim n'/?.e(Y™) = Cem/v6.

n—oc
Remark 2. We only have the assumption on the strong order ~ for Yt(”) for
uniform MSE (on discretization points). It can be a stochastic Ito-Taylor nu-
merical scheme for example. This means that if the numerical process converges
to X fast enough at discretization points i.e., v > 1/2, it converges to X; as

fast as X; globally. Observe that the global L? convergence order is always 1/2
when v > 1/2.

Proof. We have

e(ff(”)) <e(X, ') + e(X,Y(")),
e(Y™) > e(X, X) — (X, V(™).
Since
o O < o (ny 2y ] /2 -
e(X,v() < [E(sup{th A )} <Kn7,
73
we have

limsup n1/2 . e(f/’(n)) < Ceqm‘/\/é’

n—oo

liminf ’rLl/2 . e(f/(")) > Cequi/\/g’

n—00

by Lemma 3. O
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Remark 3. In a similar way, we can show that the optimal convergence rate for
global uniform error [7] is invariant if the numerical scheme used has the MSE
strong order (logn/ n)l/ 2 j.e., Euler scheme also has the optimal performance
asymtotically in this case.

3. Conclusion

We proposed to use the linear interpolation process, denoted by X, in eval-
uating the convergence rates of numerical schemes. In the literature ([2], [3],
[4], [7], [B]), the Ito-Taylor approzimation (4) has been used for evaluating the
convergence rates with complicated proofs. Our method is simple and more
intuitive than the previous approach such that one can clearly grasp the essen-
tial part of the numerical errors. We expect our method to provide a useful
approach for numerical error analysis of stochastic processes.
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