Bull. Korean Math. Soc. 44 (2007), No. 1, pp. 195-202

CHARACTERIZATIONS OF REAL HYPERSURFACES OF
COMPLEX SPACE FORMS IN TERMS OF RICCI
OPERATORS

WooN HA SOHN

ABSTRACT. We prove that a real hypersurface M in a complex space
form Mp(c), ¢ # 0, whose Ricci operator and structure tensor commute
each other on the holomorphic distribution and the Ricci operator is 7-
parallel, is a Hopf hypersurface. We also give a characterization of this
hypersurface.

0. Introduction

A complex n-dimensional Kaeherian manifold of constant holomorphic sec-
tional curvature c is called a complex space form, which is denoted by M,,(c).
A complete and simply connected complex space form consists of a complex
projective space P, (C), a complex Euclidean space C™ or a complex hyperbolic
space H,(C), according to ¢ > 0, c =0 or ¢ < 0.

R. Takagi ([9]) classified all homogeneous real hypersurfaces in P, (C) into
six model spaces A1, Az, B, C, D and E (see also [10]). J. Berndt (]2]) has
completed the classification of homogeneous real hypersurfaces with principal
structure vector fields in H,,(C), which are divided into the model spaces Ao,
Ay, A and B. A real hypersurface of type 4A; or Ay in P,(C) or that of Ao,
A, or Ay in H,(C) is said to be of type A for simplicity.

We shall denote the induced almost contact metric structure of the real
hypersurface M in M, (c) by (¢, <, >,£,n). The Ricci operator of M will be
denoted by S, and the shape operator or the second fundamental tensor field
of M by A. If the structure vector field £ is principal, then M is called a
Hopf hypersurface. The holomorphic distribution T of a real hypersurface M
in M, (c) is defined by

To(p) = {X € T,(M) | < X,£>,=0},
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where T,(M) is the tangent space of M at p € M. The Ricci operator S is said
to be n-parallel if

(0.1) <(VxS)Y,Z>=0

for any vector fields X, Y and Z in Tj.

Many authors have occupied themselves with the study of geometrical prop-
erties of real hypersurfaces with n-parallel Ricci operators (see [1], [3], [4], [5],
[6], [7], [8] and [9]). Recently, I-B. Kim, K. H. Kim and the present author
studied real hypersurfaces in M,,(c) with certain conditions related to the Ricci
operator and the structure tensor field ¢ in [3]. In [4], I-B. Kim, H. J. Park
and the present author gave a characterization of the real hypersurface with
a special n-parallel Ricci operators. For the conditions on the 7-parallel Ricci
operator, Kimura and Maeda ([5]) and Suh ({8]) proved the following.

Theorem A. Theorem A ([5], [8]) Let M be a real hypersurface in a complex
space form My, (c), ¢ # 0. Then the Ricci operator of M is n-parallel and the
structure vector field £ is principal if and only if M is locally congruent to one
of the model spaces of type A or type B.

The purpose of this paper is to improve the results in the previous paper [4]
and characterize the real hypersurfaces with n-parallel Ricci operator. Namely,
we shall prove the followings.

Theorem 1. Let M be a real hypersurface with n-parallel Ricci operator in a
complex space form M,(c), c# 0, n > 3. If M satisfies

(0.2) < (S¢—pS)X,Y >=0,
for any X andY in Ty, then M is a Hopf hypersurface.

Theorem 2. Let M be a real hypersurface with n-parallel Ricci operator in a
complez space form My (c), ¢ # 0, n > 3. If M satisfies (0.2), then M is locally
congruent to one of the model spaces of type A or type B.

1. Preliminaries

Let M be a real hypersurface immersed in a complex space form (M,(c),
<,>,J) of constant holomorphic sectional curvature ¢, and let N be a unit
normal vector field on an open neighborhood in M. For a local tangent vector
field X on the neighborhood, the images of X and N under the almost complex
structure J of M, (c) can be expressed by

JX = ¢X +n(X)N, JN = —¢,

where ¢ defines a linear transformation on the tangent space T,,(M) of M at
any point p € M, and n and £ denote a 1-form and a unit tangent vector field
on the neighborhood respectively. Then, denoting the Riemannian metric on
M induced from the metric on M, (c) by the same symbol <, >, it is easy to
see that

< ¢X,Y >+ < ¢Y, X >=0, <& X >=n(X)
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for any tangent vector fields X and Y on M. The collection (¢, <,>, &, n)is
called an almost contact metric structure on M, and satisfies

(1 1) ¢2X =-X +77<X)§7 ¢§ =0, T’((bX) =0, 77(5) =1,
' < ¢X,pY >=< X,Y > —n(X)n(Y).

Let V be the Riemannian connection with respect to the metric <, > on M,
and A be the shape operator in the direction of N on M. Then we have

(1.2) Vxt=0AX, (Vx¢)Y =n(Y)AX— < AX,Y > €.

Since the ambient space is of constant holomorphic sectional curvature ¢, the

equations of Gauss and Codazzi are given by
(1.3)

R(X,Y)Z:§{< Y,Z> X~ <X, Z>Y+<¢Y,Z>¢X— < ¢X,Z>¢Y
—2< XY > ¢Z}+ < AY, Z > AX - < AX,Z > AY,

(14)  (VxA)Y — (VyA)X = g{n(X)qSY (V)X —2< ¢X,Y > £}

for any tangent vector fields X, Y and Z on M, where R is the Riemannian
curvature tensor field of M. Then it is easily seen from (1.3) that the Ricci
operator S of M is expressed by

(1.5) SX = g{(Zn +1)X ~ 39(X)E} + mAX — A2X,
where m = traceA is the mean curvature of M, and the covariant derivative of
(1.5) is given by
3
(VxS)Y = — Z‘f{< GAX,Y > € +n(Y)pAX} + (Xm)AY
+m(VxAY — (VxA)AY — A(Vx A)Y.

If the vector field ¢V € does not vanish, that is, the length 3 of ¢V¢£ is not
equal to zero, then it is easily seen from (1.1) and (1.2) that
(17 At = at + AU,

where o =< A, € > and U = —%(ng{ . Therefore U is a unit tangent vector
field on M and U € T,. If the vector field U can not be defined, then we may
consider 8 = 0 identically. Therefore A£ is always expressed as in (1.7).

(1.6)

2. p-parallel Ricci operators

In this section we assume that the open subset

U={pe M| p(p)+#0}

is not empty. Then, in the previous paper [4], we have proved the followings.



198 WOON HA SOHN

Lemma 2.1. ([4]) Let M be a real hypersurface with the n-parallel Ricci oper-
ator S in a complex space form My,(c), ¢ # 0, n > 3. If it satisfies (0.2), then
we have

(2.1) m = traceA = a + v,
(2.2) AU = B¢ ++U,
on U, where we have put v =< AU, U >.

It follows from (1.1), (1.5), (1.7) and (2.2) that

n—1

s¢= (" e+ ay— ),
(2.3) sv =L ey -y,
SoU = (P14 0y - p)gU

Differentiating the second equation of (2.3) covariantly along any vector field
X in Ty, we obtain

24)  (VxS)U = {(2”;r !

If we take inner product of (2.4) with U and make use of (0.1) and (2.3), we
get
(2.5) X(ay—-p*)=0 for XeT

We put

c+ay— B3I - S}VxU + X(ay - ).

Q:(a+7)A—A2:S—i—{(2n+1)[—3n®£}.

Then @ is a symmetric endomorphism on the tangent space of M. Since we see
from (0.2) and (2.3,1) that S¢ = ¢S on M, we have Q¢ = ¢Q on M. Moreover
(2.3) is equivalent to

(26) Q¢=(ay-p2 QU=(ay=F), QU = (ay—pB*)¢U.

Let k. be an eigenvalue of @, and Q(k,) be the eigenspace of @ associated with
k,, where 1 < r < 2n — 1. If ) is a principal curvature of M, then there is an
eigenvalue k, of Q such that k, = (o +v)A — A% From this quadratic, we see
that there are at most two distinct principal curvatures A; and Ay of M for a
given eigenvalue k,. Therefore we have

{A(/\l)
A @ A(Ng) (M1 # A2),

where A();) is the eigenspace of A associated with the principal curvature
Ai(j = 1,2) of M, and & indicates the direct sum of vector spaces. For a
tangent vector field X € Ty such that QX = k.-X, we have Q¢X = k90X
because of Q¢ = ¢Q.

(2.7) Q(kr) =
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Let k1, ..., ks be the distinct eigenvalues of Q, and let k1 = ay—3%. Then, by
(2.6) and the above results, it is easily seen that the dimension of Q(k1), denoted
it by dim Q(k1), is odd and that of Q(k,) is even for 2 < r < 5. Moreover we see
from (1.7) that there are two distinct principal curvatures, say A and p, of M
such that £ € A(X) @ A(u), and hence Q(ky) is given by Q(k1) = A(\) @ A(p).
Since A and p are distinct solutions of 22 — (a + )z — k1 = 0, we have

(2.8) Adu=a+7y, M=k = ay— 5%

Now we shall prove

Lemma 2.2. Under the same assumptions of Lemma 2.1, there exist unit
vector fields X € A(A) and Y € A(p) such that

(2.9) E=fX+gY, U=gX-FfY,
where f and g are smooth functions on U, and satisfy f?+g%> =1 and fg # 0.
Proof. If A(X) is spanned by {X;,..., X, } and A(u) by {Y1,...,Y,}, then { is

expressed by
E = ZaiXi + ijy.]
i=1 j=1

We can choose X and Y suchas Y a; X; = || 3. a; X;|| X and Y b;Y; = || >0 b; Y5
Y. By putting f? = || 3" a; X;||? and g% = || Y. b;Y;||%, we have £ = fX + gY,
f?+g*=1and fg #0.

Since we have already seen that £ = fX + gY and U = —¢V¢£ on U, it is
easy to verify that

BU = fg(A — u){gX - fY)
by use of (1.2) and (1.7). Therefore we can choose f and g such that U =
gX — fY. O

Lemma 2.3. Under the same assumptions of Lemma 2.1, the dimension of
Q(ky) is equal to 3 on U.

Proof. We have already seen that dim Q(k;) is odd, and from (2.6) that
dim Q(ky) is not less than 3.

Assume that dim Q(k;) > 5. Then, since Q(k1) = A(\) ® A(u), we may
consider that dim A(A) > dim A(y) and dim A(X) = 2¢+ 1(¢ > 1). For
the vector fields X € A(A) and Y € A(p) given in Lemma 2.2, we define the
subspaces ¥, Q, ¢% and ¢ of Q(k;) by

E={Xye€AN) | <Xy, X >=0}, oY = {¢pX | X € 3},
N={Y, € A(p) | <Y, Y >=0}, o ={oY, | Y, € OQ}.
Then we see that Q(k1) =X & Q @ span{X,Y} and dim ¥ > dim Q.

Now we shall show that ¢ C Q. For any two orthogonal vector fields X
and Y, in ¥, we see from Lemma 2.2 that both X, and Y, are orthogonal to
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¢, If we differentiate AX) = AX), covariantly along Y, and make use of the
equation of Coddazzi (1.4), then we obtain XA =Y A =0 and

(2.10) (A—AD)[X», Yy = g < Xy, Ya > &

Taking inner product of (2.10) with X and using (2.9), we get < ¢X,Y\ >=0.
This means that ¢ N'Y = {0} and hence ¢= C Q @ span{X,Y} because
$X € Q(ky). Similarly, differentiating AX, = XX, covariantly along X and
taking account of (1.4), we also have X = 0 and

c

(A= AD)[X5, X] = Sn(X)9Xs +2 < 6X, X > €}
Taking the inner product of the above equation with X and using (2.9) yields
(2.11) < X5 X >=0.

Since we get < ¢X,€ >= f < ¢X2, X > +g < ¢X),Y >= 0 by (2.9), it
follows from (2.11) that

(2.12) < ¢Xy,Y >=0.

Therefore it is easily seen from (2.11) and (2.12) that ¢X Nspan{X,Y} = {0}
and hence ¢X C €. This shows that dim ¢X < dim 2, and give rise to a
contradiction because dim ¥ = dim ¢X. Thus we have dim Q(k;) = 3. O

By Lemma 2.2, it is easy to see that ¢U is orthogonal to both X and Y.
Since we have ¢U € Q(k1) = A()) & A(p) by (2.6) and dim Q(k1) = 3 by
Lemma 2.3, we may consider that ¢U € A(p), that is,

(2.13) ApU = ugU.
Lemma 2.4. Under the same assumptions of Lemma 2.1, we have
(2.14) (v+K) <X, X, >=0

on U, where the non-zero vector fields X, and X are orthogonal to &, U and
oU, and satisfy AX, =vX, and AX, = rX,.

Proof. By Lemmas 2.2 and 2.3, we see that the principal curvatures v and & of

M never equal to A and p. Let X, € Q(k,), that is, k, = (e +~v)v — v%. Then

we see from Lemma 2.3 that k, # k; = ary — 3%. Therefore, if we multiply (2.4)

by X, and take account of (0.1), (1.5) and (2.5), then we obtain
<VxUX,>=0 for X eT;.

This means that the vector field VxU is expressed by a linear combination
of ¢, U and @U only. Since we have < VxU,& >= p < X,¢U > by taking
account of (1.2) and (2.13), we see that

(2.15) VxU =p < X,¢U > &+ < VxU,¢U > ¢U

on U. Now differentiating (2.2) covariantly along X, and using (2.15), we
obtain

(Vx, AU = (X8} + (XU + (v — u) < Vx,U,¢U > ¢U + BrX,,
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from which
<(Vx,A) XU >= v < oX,, X, >.
As a similar argument as the above, we also have

<(Vx, A)X,,U>= 8k < X, X, >.

Therefore, from the last two equations and the equation of Coddazzi (1.4), we
can verify (2.14). O

3. Proof of Theorems
In this section, we shall prove Theorems 1 and 2.

Proof of Theorem 1. We can choose a local orthonormal frame field
(3.1) {X1, Xo,..., Xon—1}

on U such that X; = X and Xy =Y are given in Lemma 2.2, X3 = ¢U and
AX; = X, for 4 < i < 2n— 1. For any X;(4 > 4) in (3.1), there exists an
eigenvalue k(2 < r < s) of @ such that X; € Q(k,). Since Q¢ = ¢@Q, we see
that ¢X; € Q(k;). As we have already seen in (2.7) and (2.8), we see that
either Q(k,) = A(\;) or Q(k,) = A(\) @ Al + v — \y).

Let Q(k.) = A(\) ® A(a+ v — X;). Since ¢X; € Q(k,), there are two
non-zero vector fields X, € A(\;) and Xoqy—x; € Ale + v — A;) such that

dXi = aXy, +bXaqry—n,,

where o and b are smooth functions on U.

If ab # 0, then we have A, = 0 by putting X, = X; and X, = X, into
(2.14) of Lemma 2.4, and o + v = 0 by puiting X, = X; and X, = Xo4q—»,
into (2.14). This means that A\; = o+~ — \; = 0, that is, Q(k,) = A(0) and a
contradiction. Therefore we have either ¢X; € A(\;) or ¢X; € Ala+7v — \).

If X; € A()\;), then we obtain \; = 0 by putting X, = X; and X, = ¢X;
into (2.14), and Q(k,) = A(0) & A(« + ). For a non-zero vector field Xo 4 €
A(a + ), we have either ¢Xo1 € A(0) or ¢Xoqy € A(a+ 7). In each case,
using (2.14), it is easily seen that a +~ = 0, and a contradiction.

Thus we see that ¢X; € A(a+~— ;). Putting X, = X, and X, = ¢X; into
(2.14), we get o + v = 0. Hence we have Q(k,) = A(\;) @ A(—\;). Moreover
we see that the multiplicity of A; is equal to that of —X;

If Q(k,) = A(\;), then we have ¢X; € A()\;), and hence \; = 0 from (2.14).

Summing up the above results, for the vector fields X;(4 < i < 2n—1) given
in (3.1), there are two cases where all the principal curvatures A; associated with
X, are equal to zero on U/, and where the multiplicity of a non-zero principal
curvature \; associated with X is equal to that of —)\; (associated with ¢X;),
and traceA = a+ vy = 0.

The former implies that traceA = a4+ = A+ 24, and we see from (2.8) that
1 = 0 identically on ¢. Thus the type number at any point of I/ is not greater
than 1, and this does not occur (for instance, see [7]). The latter shows that
traceA = a+v = A +2u = 0, and from (2.8) that = 0 and k; = ay— 2 =0
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on U. Therefore we have o® + 3% = 0 and a contradiction. Thus the subset U
must be empty. ]

Proof of Theorem 2. Theorem 2 follows from Theorem A and Theorem 1. [
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