CHARACTERIZATIONS OF REAL HYPERSURFACES OF COMPLEX SPACE FORMS IN TERMS OF RICCI OPERATORS

Woon Ha Sohn

ABSTRACT. We prove that a real hypersurface M in a complex space form $M_n(c)$, $c \neq 0$, whose Ricci operator and structure tensor commute each other on the holomorphic distribution and the Ricci operator is η -parallel, is a Hopf hypersurface. We also give a characterization of this hypersurface.

0. Introduction

A complex n-dimensional Kaeherian manifold of constant holomorphic sectional curvature c is called a complex space form, which is denoted by $M_n(c)$. A complete and simply connected complex space form consists of a complex projective space $P_n(\mathbb{C})$, a complex Euclidean space \mathbb{C}^n or a complex hyperbolic space $H_n(\mathbb{C})$, according to c > 0, c = 0 or c < 0.

R. Takagi ([9]) classified all homogeneous real hypersurfaces in $P_n(\mathbb{C})$ into six model spaces A_1 , A_2 , B, C, D and E (see also [10]). J. Berndt ([2]) has completed the classification of homogeneous real hypersurfaces with principal structure vector fields in $H_n(\mathbb{C})$, which are divided into the model spaces A_0 , A_1 , A_2 and B. A real hypersurface of type A_1 or A_2 in $P_n(\mathbb{C})$ or that of A_0 , A_1 or A_2 in $H_n(\mathbb{C})$ is said to be of type A for simplicity.

We shall denote the induced almost contact metric structure of the real hypersurface M in $M_n(c)$ by $(\phi, <, >, \xi, \eta)$. The Ricci operator of M will be denoted by S, and the shape operator or the second fundamental tensor field of M by A. If the structure vector field ξ is principal, then M is called a Hopf hypersurface. The holomorphic distribution T_0 of a real hypersurface M in $M_n(c)$ is defined by

$$T_0(p) = \{ X \in T_p(M) \mid \langle X, \xi \rangle_p = 0 \},$$

Received October 15, 2006.

²⁰⁰⁰ Mathematics Subject Classification. Primary 53C40; Secondary 53C15.

Key words and phrases. real hypersurfaces in complex space forms, Hopf hypersurfaces, model spaces of type A or B.

where $T_p(M)$ is the tangent space of M at $p \in M$. The Ricci operator S is said to be η -parallel if

$$(0.1) \langle (\nabla_X S)Y, Z \rangle = 0$$

for any vector fields X, Y and Z in T_0 .

Many authors have occupied themselves with the study of geometrical properties of real hypersurfaces with η -parallel Ricci operators (see [1], [3], [4], [5], [6], [7], [8] and [9]). Recently, I.-B. Kim, K. H. Kim and the present author studied real hypersurfaces in $M_n(c)$ with certain conditions related to the Ricci operator and the structure tensor field ϕ in [3]. In [4], I.-B. Kim, H. J. Park and the present author gave a characterization of the real hypersurface with a special η -parallel Ricci operators. For the conditions on the η -parallel Ricci operator, Kimura and Maeda ([5]) and Suh ([8]) proved the following.

Theorem A. Theorem A ([5], [8]) Let M be a real hypersurface in a complex space form $M_n(c)$, $c \neq 0$. Then the Ricci operator of M is η -parallel and the structure vector field ξ is principal if and only if M is locally congruent to one of the model spaces of type A or type B.

The purpose of this paper is to improve the results in the previous paper [4] and characterize the real hypersurfaces with η -parallel Ricci operator. Namely, we shall prove the followings.

Theorem 1. Let M be a real hypersurface with η -parallel Ricci operator in a complex space form $M_n(c)$, $c \neq 0$, n > 3. If M satisfies

$$\langle (S\phi - \phi S)X, Y \rangle = 0,$$

for any X and Y in T_0 , then M is a Hopf hypersurface.

Theorem 2. Let M be a real hypersurface with η -parallel Ricci operator in a complex space form $M_n(c)$, $c \neq 0$, $n \geq 3$. If M satisfies (0.2), then M is locally congruent to one of the model spaces of type A or type B.

1. Preliminaries

Let M be a real hypersurface immersed in a complex space form $(M_n(c), <, >, J)$ of constant holomorphic sectional curvature c, and let N be a unit normal vector field on an open neighborhood in M. For a local tangent vector field X on the neighborhood, the images of X and N under the almost complex structure J of $M_n(c)$ can be expressed by

$$JX = \phi X + \eta(X)N, \qquad JN = -\xi,$$

where ϕ defines a linear transformation on the tangent space $T_p(M)$ of M at any point $p \in M$, and η and ξ denote a 1-form and a unit tangent vector field on the neighborhood respectively. Then, denoting the Riemannian metric on M induced from the metric on $M_n(c)$ by the same symbol <,>, it is easy to see that

$$<\phi X, Y>+<\phi Y, X>=0, <\xi, X>=\eta(X)$$

for any tangent vector fields X and Y on M. The collection $(\phi, <, >, \xi, \eta)$ is called an almost contact metric structure on M, and satisfies

(1.1)
$$\phi^2 X = -X + \eta(X)\xi, \qquad \phi \xi = 0, \qquad \eta(\phi X) = 0, \qquad \eta(\xi) = 1, \\ < \phi X, \phi Y > = < X, Y > -\eta(X)\eta(Y).$$

Let ∇ be the Riemannian connection with respect to the metric <,> on M, and A be the shape operator in the direction of N on M. Then we have

(1.2)
$$\nabla_X \xi = \phi A X, \qquad (\nabla_X \phi) Y = \eta(Y) A X - \langle A X, Y \rangle \xi.$$

Since the ambient space is of constant holomorphic sectional curvature c, the equations of Gauss and Codazzi are given by (1.3)

$$R(X,Y)Z = \frac{c}{4} \{ \langle Y, Z \rangle X - \langle X, Z \rangle Y + \langle \phi Y, Z \rangle \phi X - \langle \phi X, Z \rangle \phi Y - 2 \langle \phi X, Y \rangle \phi Z \} + \langle AY, Z \rangle AX - \langle AX, Z \rangle AY,$$

$$(1.4) \qquad (\nabla_X A)Y - (\nabla_Y A)X = \frac{c}{4}\{\eta(X)\phi Y - \eta(Y)\phi X - 2 < \phi X, Y > \xi\}$$

for any tangent vector fields X, Y and Z on M, where R is the Riemannian curvature tensor field of M. Then it is easily seen from (1.3) that the Ricci operator S of M is expressed by

(1.5)
$$SX = \frac{c}{4} \{ (2n+1)X - 3\eta(X)\xi \} + mAX - A^2X,$$

where m = traceA is the mean curvature of M, and the covariant derivative of (1.5) is given by

(1.6)
$$(\nabla_X S)Y = -\frac{3c}{4} \{ \langle \phi AX, Y \rangle \xi + \eta(Y)\phi AX \} + (Xm)AY + m(\nabla_X A)Y - (\nabla_X A)AY - A(\nabla_X A)Y.$$

If the vector field $\phi \nabla_{\xi} \xi$ does not vanish, that is, the length β of $\phi \nabla_{\xi} \xi$ is not equal to zero, then it is easily seen from (1.1) and (1.2) that

$$(1.7) A\xi = \alpha \xi + \beta U,$$

where $\alpha = \langle A\xi, \xi \rangle$ and $U = -\frac{1}{\beta}\phi\nabla_{\xi}\xi$. Therefore U is a unit tangent vector field on M and $U \in T_0$. If the vector field U can not be defined, then we may consider $\beta = 0$ identically. Therefore $A\xi$ is always expressed as in (1.7).

2. η -parallel Ricci operators

In this section we assume that the open subset

$$\mathcal{U} = \{ p \in M \mid \beta(p) \neq 0 \}$$

is not empty. Then, in the previous paper [4], we have proved the followings.

Lemma 2.1. ([4]) Let M be a real hypersurface with the η -parallel Ricci operator S in a complex space form $M_n(c)$, $c \neq 0$, $n \geq 3$. If it satisfies (0.2), then we have

$$(2.1) m = \operatorname{trace} A = \alpha + \gamma,$$

$$(2.2) AU = \beta \xi + \gamma U,$$

on U, where we have put $\gamma = \langle AU, U \rangle$.

It follows from (1.1), (1.5), (1.7) and (2.2) that

(2.3)
$$S\xi = (\frac{n-1}{2}c + \alpha\gamma - \beta^2)\xi,$$
$$SU = (\frac{2n+1}{4}c + \alpha\gamma - \beta^2)U,$$
$$S\phi U = (\frac{2n+1}{4}c + \alpha\gamma - \beta^2)\phi U.$$

Differentiating the second equation of (2.3) covariantly along any vector field X in T_0 , we obtain

$$(2.4) \qquad (\nabla_X S)U = \{(\frac{2n+1}{4}c + \alpha\gamma - \beta^2)I - S\}\nabla_X U + X(\alpha\gamma - \beta^2)U.$$

If we take inner product of (2.4) with U and make use of (0.1) and (2.3), we get

(2.5)
$$X(\alpha \gamma - \beta^2) = 0 \quad \text{for} \quad X \in T_0.$$

We put

$$Q = (\alpha + \gamma)A - A^2 = S - \frac{c}{4}\{(2n+1)I - 3\eta \otimes \xi\}.$$

Then Q is a symmetric endomorphism on the tangent space of M. Since we see from (0.2) and (2.3,1) that $S\phi = \phi S$ on M, we have $Q\phi = \phi Q$ on M. Moreover (2.3) is equivalent to

(2.6)
$$Q\xi = (\alpha\gamma - \beta^2)\xi$$
, $QU = (\alpha\gamma - \beta^2)U$, $Q\phi U = (\alpha\gamma - \beta^2)\phi U$.

Let k_r be an eigenvalue of Q, and $Q(k_r)$ be the eigenspace of Q associated with k_r , where $1 \le r \le 2n-1$. If λ is a principal curvature of M, then there is an eigenvalue k_r of Q such that $k_r = (\alpha + \gamma)\lambda - \lambda^2$. From this quadratic, we see that there are at most two distinct principal curvatures λ_1 and λ_2 of M for a given eigenvalue k_r . Therefore we have

(2.7)
$$Q(k_r) = \begin{cases} A(\lambda_1) \\ A(\lambda_1) \oplus A(\lambda_2) & (\lambda_1 \neq \lambda_2), \end{cases}$$

where $A(\lambda_j)$ is the eigenspace of A associated with the principal curvature $\lambda_j (j=1,2)$ of M, and \oplus indicates the direct sum of vector spaces. For a tangent vector field $X \in T_0$ such that $QX = k_r X$, we have $Q\phi X = k_r \phi X$ because of $Q\phi = \phi Q$.

Let k_1, \ldots, k_s be the distinct eigenvalues of Q, and let $k_1 = \alpha \gamma - \beta^2$. Then, by (2.6) and the above results, it is easily seen that the dimension of $Q(k_1)$, denoted it by dim $Q(k_1)$, is odd and that of $Q(k_r)$ is even for $2 \le r \le s$. Moreover we see from (1.7) that there are two distinct principal curvatures, say λ and μ , of M such that $\xi \in A(\lambda) \oplus A(\mu)$, and hence $Q(k_1)$ is given by $Q(k_1) = A(\lambda) \oplus A(\mu)$. Since λ and μ are distinct solutions of $x^2 - (\alpha + \gamma)x - k_1 = 0$, we have

(2.8)
$$\lambda + \mu = \alpha + \gamma, \qquad \lambda \mu = k_1 = \alpha \gamma - \beta^2.$$

Now we shall prove

Lemma 2.2. Under the same assumptions of Lemma 2.1, there exist unit vector fields $X \in A(\lambda)$ and $Y \in A(\mu)$ such that

(2.9)
$$\xi = fX + gY, \qquad U = gX - fY,$$

where f and g are smooth functions on \mathcal{U} , and satisfy $f^2 + g^2 = 1$ and $fg \neq 0$.

Proof. If $A(\lambda)$ is spanned by $\{X_1, \ldots, X_u\}$ and $A(\mu)$ by $\{Y_1, \ldots, Y_v\}$, then ξ is expressed by

$$\xi = \sum_{i=1}^{u} a_i X_i + \sum_{j=1}^{v} b_j Y_j.$$

We can choose X and Y such as $\sum a_i X_i = \|\sum a_i X_i\| X$ and $\sum b_j Y_j = \|\sum b_j Y_j\| Y$. By putting $f^2 = \|\sum a_i X_i\|^2$ and $g^2 = \|\sum b_j Y_j\|^2$, we have $\xi = fX + gY$, $f^2 + g^2 = 1$ and $fg \neq 0$.

Since we have already seen that $\xi = fX + gY$ and $\beta U = -\phi \nabla_{\xi} \xi$ on \mathcal{U} , it is easy to verify that

$$\beta U = fq(\lambda - \mu)(qX - fY)$$

by use of (1.2) and (1.7). Therefore we can choose f and g such that U = gX - fY.

Lemma 2.3. Under the same assumptions of Lemma 2.1, the dimension of $Q(k_1)$ is equal to 3 on \mathcal{U} .

Proof. We have already seen that dim $Q(k_1)$ is odd, and from (2.6) that dim $Q(k_1)$ is not less than 3.

Assume that dim $Q(k_1) \geq 5$. Then, since $Q(k_1) = A(\lambda) \oplus A(\mu)$, we may consider that dim $A(\lambda) > \dim A(\mu)$ and dim $A(\lambda) = 2\ell + 1(\ell \geq 1)$. For the vector fields $X \in A(\lambda)$ and $Y \in A(\mu)$ given in Lemma 2.2, we define the subspaces Σ , Ω , $\phi\Sigma$ and $\phi\Omega$ of $Q(k_1)$ by

$$\Sigma = \{ X_{\lambda} \in A(\lambda) \mid \langle X_{\lambda}, X \rangle = 0 \}, \qquad \phi \Sigma = \{ \phi X_{\lambda} \mid X_{\lambda} \in \Sigma \},$$

$$\Omega = \{ Y_{\mu} \in A(\mu) \mid \langle Y_{\mu}, Y \rangle = 0 \}, \qquad \phi \Omega = \{ \phi Y_{\mu} \mid Y_{\mu} \in \Omega \}.$$

Then we see that $Q(k_1) = \Sigma \oplus \Omega \oplus \operatorname{span}\{X,Y\}$ and dim $\Sigma > \dim \Omega$.

Now we shall show that $\phi \Sigma \subset \Omega$. For any two orthogonal vector fields X_{λ} and Y_{λ} in Σ , we see from Lemma 2.2 that both X_{λ} and Y_{λ} are orthogonal to

 ξ . If we differentiate $AX_{\lambda} = \lambda X_{\lambda}$ covariantly along Y_{λ} and make use of the equation of Coddazzi (1.4), then we obtain $X_{\lambda}\lambda = Y_{\lambda}\lambda = 0$ and

(2.10)
$$(A - \lambda I)[X_{\lambda}, Y_{\lambda}] = \frac{c}{2} < \phi X_{\lambda}, Y_{\lambda} > \xi.$$

Taking inner product of (2.10) with X and using (2.9), we get $\langle \phi X_{\lambda}, Y_{\lambda} \rangle = 0$. This means that $\phi \Sigma \cap \Sigma = \{0\}$ and hence $\phi \Sigma \subset \Omega \oplus \operatorname{span}\{X,Y\}$ because $\phi X_{\lambda} \in Q(k_1)$. Similarly, differentiating $AX_{\lambda} = \lambda X_{\lambda}$ covariantly along X and taking account of (1.4), we also have $X\lambda = 0$ and

$$(A - \lambda I)[X_{\lambda}, X] = \frac{c}{4} \{ \eta(X) \phi X_{\lambda} + 2 < \phi X_{\lambda}, X > \xi \}.$$

Taking the inner product of the above equation with X and using (2.9) yields

$$(2.11) \langle \phi X_{\lambda}, X \rangle = 0.$$

Since we get $<\phi X_{\lambda},\xi>=f<\phi X_{\lambda},X>+g<\phi X_{\lambda},Y>=0$ by (2.9), it follows from (2.11) that

$$(2.12) < \phi X_{\lambda}, Y > = 0.$$

Therefore it is easily seen from (2.11) and (2.12) that $\phi \Sigma \cap \text{span}\{X,Y\} = \{0\}$ and hence $\phi \Sigma \subset \Omega$. This shows that dim $\phi \Sigma \leq \dim \Omega$, and give rise to a contradiction because dim $\Sigma = \dim \phi \Sigma$. Thus we have dim $Q(k_1) = 3$.

By Lemma 2.2, it is easy to see that ϕU is orthogonal to both X and Y. Since we have $\phi U \in Q(k_1) = A(\lambda) \oplus A(\mu)$ by (2.6) and dim $Q(k_1) = 3$ by Lemma 2.3, we may consider that $\phi U \in A(\mu)$, that is,

$$(2.13) A\phi U = \mu \phi U.$$

Lemma 2.4. Under the same assumptions of Lemma 2.1, we have

$$(2.14) \qquad (\nu + \kappa) < \phi X_{\nu}, X_{\kappa} > = 0$$

on \mathcal{U} , where the non-zero vector fields X_{ν} and X_{κ} are orthogonal to ξ , U and ϕU , and satisfy $AX_{\nu} = \nu X_{\nu}$ and $AX_{\kappa} = \kappa X_{\kappa}$.

Proof. By Lemmas 2.2 and 2.3, we see that the principal curvatures ν and κ of M never equal to λ and μ . Let $X_{\nu} \in Q(k_q)$, that is, $k_q = (\alpha + \gamma)\nu - \nu^2$. Then we see from Lemma 2.3 that $k_q \neq k_1 = \alpha \gamma - \beta^2$. Therefore, if we multiply (2.4) by X_{ν} and take account of (0.1), (1.5) and (2.5), then we obtain

$$\langle \nabla_X U, X_{\nu} \rangle = 0$$
 for $X \in T_0$.

This means that the vector field $\nabla_X U$ is expressed by a linear combination of ξ , U and ϕU only. Since we have $\langle \nabla_X U, \xi \rangle = \mu \langle X, \phi U \rangle$ by taking account of (1.2) and (2.13), we see that

(2.15)
$$\nabla_X U = \mu < X, \phi U > \xi + < \nabla_X U, \phi U > \phi U$$

on \mathcal{U} . Now differentiating (2.2) covariantly along X_{ν} and using (2.15), we obtain

$$(\nabla_{X_{\nu}}A)U = (X_{\nu}\beta)\xi + (X_{\nu}\gamma)U + (\gamma - \mu) < \nabla_{X_{\nu}}U, \phi U > \phi U + \beta\nu\phi X_{\nu},$$

from which

$$<(\nabla_{X_{\nu}}A)X_{\kappa}, U>=\beta\nu<\phi X_{\nu}, X_{\kappa}>.$$

As a similar argument as the above, we also have

$$<(\nabla_{X_{\nu}}A)X_{\nu},U>=\beta\kappa<\phi X_{\kappa},X_{\nu}>.$$

Therefore, from the last two equations and the equation of Coddazzi (1.4), we can verify (2.14).

3. Proof of Theorems

In this section, we shall prove Theorems 1 and 2.

Proof of Theorem 1. We can choose a local orthonormal frame field

$$\{X_1, X_2, \dots, X_{2n-1}\}\$$

on \mathcal{U} such that $X_1=X$ and $X_2=Y$ are given in Lemma 2.2, $X_3=\phi U$ and $AX_i=\lambda_i X_i$ for $4\leq i\leq 2n-1$. For any $X_i (i\geq 4)$ in (3.1), there exists an eigenvalue $k_r(2\leq r\leq s)$ of Q such that $X_i\in Q(k_r)$. Since $Q\phi=\phi Q$, we see that $\phi X_i\in Q(k_r)$. As we have already seen in (2.7) and (2.8), we see that either $Q(k_r)=A(\lambda_i)$ or $Q(k_r)=A(\lambda_i)\oplus A(\alpha+\gamma-\lambda_i)$.

Let $Q(k_r) = A(\lambda_i) \oplus A(\alpha + \gamma - \lambda_i)$. Since $\phi X_i \in Q(k_r)$, there are two non-zero vector fields $X_{\lambda_i} \in A(\lambda_i)$ and $X_{\alpha+\gamma-\lambda_i} \in A(\alpha+\gamma-\lambda_i)$ such that

$$\phi X_i = aX_{\lambda_i} + bX_{\alpha + \gamma - \lambda_i},$$

where a and b are smooth functions on \mathcal{U} .

If $ab \neq 0$, then we have $\lambda_i = 0$ by putting $X_{\nu} = X_i$ and $X_{\kappa} = X_{\lambda_i}$ into (2.14) of Lemma 2.4, and $\alpha + \gamma = 0$ by putting $X_{\nu} = X_i$ and $X_{\kappa} = X_{\alpha + \gamma - \lambda_i}$ into (2.14). This means that $\lambda_i = \alpha + \gamma - \lambda_i = 0$, that is, $Q(k_r) = A(0)$ and a contradiction. Therefore we have either $\phi X_i \in A(\lambda_i)$ or $\phi X_i \in A(\alpha + \gamma - \lambda_i)$.

If $\phi X_i \in A(\lambda_i)$, then we obtain $\lambda_i = 0$ by putting $X_{\nu} = X_i$ and $X_{\kappa} = \phi X_i$ into (2.14), and $Q(k_r) = A(0) \oplus A(\alpha + \gamma)$. For a non-zero vector field $X_{\alpha+\gamma} \in A(\alpha+\gamma)$, we have either $\phi X_{\alpha+\gamma} \in A(0)$ or $\phi X_{\alpha+\gamma} \in A(\alpha+\gamma)$. In each case, using (2.14), it is easily seen that $\alpha + \gamma = 0$, and a contradiction.

Thus we see that $\phi X_i \in A(\alpha + \gamma - \lambda_i)$. Putting $X_{\nu} = X_i$ and $X_{\kappa} = \phi X_i$ into (2.14), we get $\alpha + \gamma = 0$. Hence we have $Q(k_r) = A(\lambda_i) \oplus A(-\lambda_i)$. Moreover we see that the multiplicity of λ_i is equal to that of $-\lambda_i$

If $Q(k_r) = A(\lambda_i)$, then we have $\phi X_i \in A(\lambda_i)$, and hence $\lambda_i = 0$ from (2.14). Summing up the above results, for the vector fields $X_i (4 \le i \le 2n - 1)$ given in (3.1), there are two cases where all the principal curvatures λ_i associated with X_i are equal to zero on \mathcal{U} , and where the multiplicity of a non-zero principal curvature λ_i associated with X_i is equal to that of $-\lambda_i$ (associated with ϕX_i), and trace $A = \alpha + \gamma = 0$.

The former implies that trace $A = \alpha + \gamma = \lambda + 2\mu$, and we see from (2.8) that $\mu = 0$ identically on \mathcal{U} . Thus the type number at any point of \mathcal{U} is not greater than 1, and this does not occur (for instance, see [7]). The latter shows that trace $A = \alpha + \gamma = \lambda + 2\mu = 0$, and from (2.8) that $\mu = 0$ and $k_1 = \alpha \gamma - \beta^2 = 0$

on \mathcal{U} . Therefore we have $\alpha^2 + \beta^2$	= 0 and a	contradiction.	Thus the s	subset $\mathcal U$
must be empty.				
Proof of Theorem 2. Theorem 2	follows from	Theorem A a	nd Theore	m 1. □

References

- [1] C. Baikoussis, A characterization of real hypersurfaces in complex space form in terms of the Ricci tensor, Canad. Math. Bull. 40 (1997), no. 3, 257–265.
- [2] J. Berndt, Real hypersurfaces with constant principal curvatures in complex hyperbolic space, J. Reine Angew. Math. 395 (1989), 132-141.
- [3] I.-B. Kim, K. H. Kim, and W. H. Sohn, Characterizations of real hypersurfaces in a complex space form, Canad. Math. Bull. 50 (2007), no. 1, 97-104.
- [4] I.-B. Kim, H. J. Park, and W. H. Sohn, On characterizations of real hypersurfaces with η-parallel Ricci operators in a complex space form, Bull. Korean Math. Soc. 43 (2006), no. 2, 235-244.
- [5] M. Kimura and S. Maeda, On real hypersurfaces of a complex projective space, Math. Z. 202 (1989), no. 3, 299–311.
- [6] ______, Characterizations of geodesic hyperspheres in a complex projective space in terms of Ricci tensors, Yokohama Math. J. 40 (1992), no. 1, 35–43.
- [7] R. Niebergall and P. J. Ryan, Real hypersurfaces in complex space forms, Tight and taut submanifolds (Berkeley, CA, 1994), 233–305, Math. Sci. Res. Inst. Publ., 32, Cambridge Univ. Press, Cambridge, 1997.
- [8] Y. J. Suh, On real hypersurfaces of a complex space form with η-parallel Ricci tensor, Tsukuba J. Math. 14 (1990), no. 1, 27–37.
- [9] R. Takagi, On homogeneous real hypersurfaces in a complex projective space, Osaka J. Math. 10 (1973), 495-506.
- [10] R. Takagi, I.-B. Kim, and B. H. Kim, The rigidity for real hypersurfaces in a complex projective space, Tohoku Math. J. (2) 50 (1998), no. 4, 531-536.

DEPARTMENT OF MATHEMATICS HANKUK UNIVERSITY OF FOREIGN STUDIES SEOUL 130-791, KOREA E-mail address: mathsohn@hufs.ac.kr