FEYNMAN INTEGRAL, ASPECT OF DOBRakov INTEGRAL, I

MAn KYu IM and BRIAn JEFFERIES

ABSTRACT. This paper is the first in a series in which we consider bilinear integration with respect to measure-valued measure. We use the integration techniques to establish generalized Egorov theorem and Vitali theorem.

1. Introduction

The measure-valued measures V_φ were introduced in [13] and studied in relation to a measure-valued Feynman-Kac formula. For a given complex Borel measure $\varphi : B(\mathbb{R}) \to \mathbb{C}$ on \mathbb{R}, the measure-valued measures V_φ is defined as follows. The space of all continuous functions $\omega : [0, t] \to \mathbb{R}$ is denoted by $C([0, t])$. It is given with the uniform norm. If $X_s : C([0, t]) \to \mathbb{R}$ denotes evolution at time $0 \leq s \leq t$, then for the cylinder set $E = \{ X_{t_1} \in B_1, \ldots, X_{t_n} \in B_n \}$ in $C([0, t])$ with $0 \leq t_1 < \cdots < \cdots < t_n \leq t$ and Borel sets B_1, \ldots, B_n, the complex Borel measure $V_\varphi(E)$ is defined by the formula

$$
(V_\varphi(E))(B) = \frac{1}{\sqrt{(2\pi(t-t_n))\cdots(2\pi t_1)}} \int_B \int_{B_n} \cdots \int_{B_1} \int_{\mathbb{R}} e^{-\frac{|x_n-x_{n-1}|^2}{2(t-t_n)}} \\
\times e^{-\frac{|x_{n-1}-x_{n-2}|^2}{2(t_{n-1}-t_n)}} \cdots e^{-\frac{|x_2-x_1|^2}{2(t_2-t_1)}} e^{-\frac{|x_1-x|^2}{2t_1}} d\varphi(x) dx_1 \cdots dx_n d\xi
$$

(1)

for each Borel subset B of \mathbb{R}. Clearly V_φ is closely related to Wiener measure and the complex valued measure $V_\varphi(\cdot)(B)$ may be viewed as Wiener measure with an initial distribution φ subject to the condition $\{X_t \in B\}$. Another way of looking at the measure valued measure V_φ is to take the semigroup $S(t) : \mathcal{M}(\mathbb{R}) \to \mathcal{M}(\mathbb{R})$, $t \geq 0$, defined on the space $\mathcal{M}(\mathbb{R})$ of Borel measures on \mathbb{R}.

Received January 12, 2006; Revised February 1, 2006.

2000 Mathematics Subject Classification. Primary 81S40, 58D30; Secondary 46G10, 28B05.

Key words and phrases. measure-valued measure, Dobrakov integral.

This work was supported by the Post-doctoral Fellowship Program of Korea Science & Engineering Foundation (KOSEF).

©2007 The Korean Mathematical Society
\mathbb{R} by $S(0) = Id$ and
\[
[S(t)\mu](B) = \frac{1}{\sqrt{2\pi t}} \int_{\mathbb{R}} e^{-\frac{|\xi - \mu|^2}{4t}} d\mu(x) d\xi, \quad B \in \mathcal{B}(\mathbb{R}), \quad \mu \in \mathcal{M}(\mathbb{R})
\]
for $t > 0$ and $Q(B)\mu = \chi_B \cdot \mu$ for all $B \in \mathcal{B}(\mathbb{R})$ and $\mu \in \mathcal{M}(\mathbb{R})$. If M^t denotes the operator valued set function associated with the (S, Q)-process [7], then for each cylinder set E we have $M^t(E)\varphi = V_{\varphi}(E \cap C([0, t]))$. If we replace $\mathcal{M}(\mathbb{R})$ by the Hilbert space $L^2(\mathbb{R})$ and S by
\[
[S_F(t)](\psi)(\xi) = \frac{1}{\sqrt{2\pi t}} \int_{\mathbb{R}} e^{i\frac{\xi - \mu}{2t}} \psi(x) dx, \quad \psi \in L^2(\mathbb{R}), \quad t > 0,
\]
where the integral is understood in the sense of mean-square convergence, then we obtain the operator valued set functions M^t_F associated with the Feynman path integral. Roughly speaking, for each $t \geq 0$, the bounded linear operator $S_F(t)$ is equal to $S(it)$ applied to complex measures with square-integrable densities with respect to Lebesgue measure on \mathbb{R}.

2. Convergence theorem for measure-valued measures

In this paper we denote the inner product of two elements a, b in a Banach space to (a, b) or even ab.

Let (Σ, \mathcal{E}), (Ω, \mathcal{B}) be measurable spaces. The space of all complex measures defined on \mathcal{E} with the total variation norm is denoted by $\mathcal{M}(\mathcal{E})$. The space of nonnegative elements of $\mathcal{M}(\mathcal{E})$ is written as $\mathcal{M}_+(\mathcal{E})$. The variation of a scalar measure μ is written as $|\mu|$. Let \mathcal{X} be a Banach space. For any $\mathcal{M}(\mathcal{E})$-valued measure $m : \mathcal{B} \to \mathcal{M}(\mathcal{E})$, the operator valued measure $m^{\mathcal{X}} : \mathcal{B} \to \mathcal{L}(\mathcal{X}, \mathcal{M}(\mathcal{E}, \mathcal{X}))$ be defined by
\[
m^{\mathcal{X}}(B)x = xm(B), \quad x \in \mathcal{X}, \quad B \in \mathcal{B}.
\]
Here $\mathcal{M}(\mathcal{E}, \mathcal{X})$ is the space of \mathcal{X}-valued measures on \mathcal{E} equipped with the semivariation norm defined by
\[
||n|| = \sup\{|(n, x')(\Sigma) : x' \in \mathcal{X}', ||x'|| \leq 1\}, \quad n \in \mathcal{M}(\mathcal{E}, \mathcal{X}).
\]
We also write this as $||n||_{\mathcal{M}(\mathcal{E}, \mathcal{X})}$. Although the semivariation of an \mathcal{X}-valued measure is always finite, for every infinite dimensional Banach space \mathcal{X}, there is an \mathcal{X}-valued measure n whose total variation
\[
||n||_v = \sup\{\sum_j ||n(E_j)||\}
\]
is infinite. The supremum is over all finite partitions $\{E_j\}$ of Σ by elements of \mathcal{E}. The space of \mathcal{X}-valued measures on \mathcal{E} with finite variation and equipped with the variation norm is denoted by $\mathcal{M}_v(\mathcal{E}, \mathcal{X})$. The variation of $n \in \mathcal{M}_v(\mathcal{E}, \mathcal{X})$ is written as $v_{\mathcal{X}}(n) : \mathcal{E} \to [0, \infty)$. Our aim is to integrate \mathcal{X}-valued functions
with respect to the \(\mathcal{M}(\mathcal{E}) \)-valued measure \(m \); the integral takes its values in \(\mathcal{M}(\mathcal{E}, \mathcal{X}) \). We also need to consider the \(\mathcal{X} \)-semivariation of \(m \) on \(\mathcal{B} \):

\[
\beta_{\mathcal{X}}(m)(B) = \sup\{\| \sum_{j=1}^{n} x_j m(B_j \cap B) \|_{\mathcal{M}(\mathcal{E}, \mathcal{X})} \}.
\]

The supremum is taken over all \(x_j \in \mathcal{X} \) with \(\|x_j\| \leq 1 \) and all finite partitions \(\{B_j\} \) of \(\Omega \). The \(\mathcal{X} \)-semivariation \(\beta_{\mathcal{X}}(m) \) of \(m \) is identical to the semivariation of the operator valued measure \(m^\mathcal{X} \) in the sense of Dobrakov. It can happen that \(\beta_{\mathcal{X}}(m) \) has only the values 0 or \(\infty \). An \(\mathcal{X} \)-valued function \(f : \Omega \to \mathcal{X} \) is called a simple function if for some \(n \in \mathbb{N} \), there exist vectors \(x_j \in \mathcal{X} \) and sets \(B_j \in \mathcal{B} \) for \(j = 1, 2, \ldots, n \) such that \(f = \sum_{j=1}^{n} x_j \chi_{B_j} \). For an \(\mathcal{X} \)-valued simple function \(f = \sum_{j=1}^{n} x_j \chi_{B_j} \) and for \(B \in \mathcal{B} \), we define the integral

\[
\int_{B} f \otimes dm = \sum_{j=1}^{n} x_j m(B \cap B_j) \in \mathcal{M}(\mathcal{E}, \mathcal{X}).
\]

We also write this \(\int_{B} f dm^\mathcal{X} \). A standard argument ensures that the \(\mathcal{X} \)-valued measure \(\int_{B} f \otimes dm \) is well-defined. The \(\mathcal{X} \)-semivariation \(\beta_{\mathcal{X}}(m) \) of \(m \) is extended from sets to functions \(f : \Omega \to \mathcal{X} \) by setting

\[
\beta_{\mathcal{X}}(m)(f) = \beta_{\mathcal{X}}(m)(|f|) = \sup\{\| \int_{B} s \otimes dm \|_{\mathcal{M}(\mathcal{E}, \mathcal{X})} \},
\]

where the supremum is taken for all \(\mathcal{X} \)-valued \(\mathcal{B} \)-simple functions \(s \) with \(\|s(\omega)\|_{\mathcal{X}} \leq \|f(\omega)\|_{\mathcal{X}} \) for \(m \)-almost all \(\omega \in \Omega \). In the notation of Dobrakov, we have \(\beta_{\mathcal{X}}(m) = m^\mathcal{X} \). We set

\[
\mathcal{L}_1(\beta_{\mathcal{X}}(m)) = \{ f : \Omega \to \mathcal{X} \text{ is } m \text{-measurable and } \beta_{\mathcal{X}}(m)(f) < \infty \}
\]

\[
\mathcal{B}_{\mathcal{X}}(\mathcal{B}) = \{ f \in \mathcal{L}_1(\beta_{\mathcal{X}}(m)) | f \text{ is uniformly bounded} \}
\]

\[
\mathcal{L}_1(\mathcal{B}_{\mathcal{X}}, \beta_{\mathcal{X}}(m)) = \mathcal{B}_{\mathcal{X}}(\mathcal{B}).
\]

The closure is taken in the norm \(\beta_{\mathcal{X}}(m) \) defined on \(\mathcal{L}_1(\beta_{\mathcal{X}}(m)) \). With modulo \(m \)-null functions, \(\mathcal{L}_1(\beta_{\mathcal{X}}(m)) \) becomes a Banach space \(\mathcal{L}_1(\beta_{\mathcal{X}}(m)) \). As noted above, the \(\mathcal{X} \)-semivariation \(\beta_{\mathcal{X}}(m) : \mathcal{B} \to [0, \infty] \) may take only the values 0 and \(\infty \), so it can happen that \(\mathcal{L}_1(\beta_{\mathcal{X}}(m)) \) just consists of the zero function. Let \(M \subset \mathcal{M}(\mathcal{E}, \mathcal{X})^* \). Let \(M_1 \) denote the set of all elements \(\mu \) of \(M \) such that \(\|\mu\| \leq 1 \) and suppose that \(M_1 \) is norming for \(\mathcal{M}(\mathcal{E}, \mathcal{X}) \). Then for any \(\mu \in M \) we define \(\mu \circ m^\mathcal{X} : \mathcal{B} \to \mathcal{X}^\ast \) by \(\langle x, \mu \circ m^\mathcal{X}(B) \rangle = \langle m^\mathcal{X}(B)x, \mu \rangle \) for \(x \in \mathcal{X} \) and \(B \in \mathcal{B} \). The set

\[
\mathcal{M}_1(m^\mathcal{X}) = \{ v_{\mathcal{X}^*}(\mu \circ m^\mathcal{X}) : \mu \in M_1 \}
\]

consists of measures on \(\mathcal{B} \) with values in \([0, \infty]\). Because

\[
\| \sum_{j=1}^{n} \langle x_j m(B_j \cap B), \mu \rangle \| \leq \| \sum_{j=1}^{n} x_j m(B_j \cap B) \|_{\mathcal{M}(\mathcal{E}, \mathcal{X})}
\]
for each \(\mu \in M_1 \), it follows that \(M_1(m^X) \) consists of finite measures if the \(X \)-semivariation \(\beta_X(m)(\Omega) \) on \(\Omega \) is finite. Because \(M_1 \) is a norming set for \(M(\mathcal{E}, X) \), we have
\[
(2) \quad \beta_X(m)(B) = \sup_{\nu \in M_1(m^X)} \nu(B), \quad B \in \mathcal{B}.
\]

By Hahn-Banach theorem, \(M = \text{sim}(\mathcal{E}) \otimes X^* \) is a dense subset of \(M(\mathcal{E}, X)^* \), so \(M_1 \) is norming for \(M(\mathcal{E}, X) \). In this section we take \(M = \text{sim}(\mathcal{E}) \otimes X^* \). In the case that \(\Sigma \) is a locally compact Hausdorff space and \(\mathcal{E} \) is the Borel \(\sigma \)-algebra of \(\Sigma \), another choice is \(M = C_0(\Sigma) \otimes X^* \) where \(C_0(\Sigma) \) is the set of all continuous functions on \(\Sigma \) vanishing at infinity. We note that for any finite dimensional Banach space \(X \), there exist measurable spaces \((\Sigma, \mathcal{E}), (\Omega, \mathcal{B}) \) and a measure-valued measure \(m : \mathcal{B} \to M(\mathcal{E}) \) such that \(\beta_X(m)(\Omega) = \infty \). Suppose that \(\beta_X(m)(\Omega) < \infty \). By virtue of the equality (2), the condition that \(M_1(m^X) \) is uniformly countable additive is equivalent to Dobrakov’s condition that \(\beta_X(m) \) is continuous, that is, if \(B_n \downarrow \emptyset \), then \(\beta_X(m)(B_n) \to 0 \) as \(n \to \infty \). For \(X = c_0 \), the classical Banach space, there exist vector measures \(m \) for which \(\beta_{c_0}(m)(\Omega) < \infty \) but \(\beta_{c_0}(m) \) is not continuous.

Definition 2.1. ([9, Definition 1.5]) Let \(m : \mathcal{B} \to M(\mathcal{E}) \) be a vector measure. A function \(f : \Omega \to X \) is said to be \(m \)-integrable in \(M(\mathcal{E}, X) \) if there exist \(X \)-valued \(\mathcal{B} \)-simple function \(f_j, \ j \in \mathbb{N} \), such that \(f_j \to f \) pointwisely \(m \)-almost everywhere as \(j \to \infty \) and \(\{ \int_B f_j \otimes dm \} \) converges in \(M(\mathcal{E}, X) \) for each \(B \in \mathcal{B} \). Let \(\int_B f \otimes dm \) denote this limit.

The above limit is well defined and independent of the approximating sequence ([7, Lemma 4.1.4]). The set function \(B \to \int_B f \otimes dm, \ B \in \mathcal{B} \), is \(\sigma \)-additive in \(M(\mathcal{E}, X) \) by the Vitali-Hahn-Saks theorem ([1, Theorem 1.5.6]). Clearly the map \((f, m) \to \int f \otimes dm \) is bilinear in the obvious sense. Also, for the case \(X = \mathbb{C} \), a function \(f : \Omega \to \mathbb{C} \) is \(m \)-integrable (as defined above) if and only if it is \(m \)-integrable in the sense of vector measures defined in I. Klíma and G. Knowles [12]. If the \(X \)-semivariation \(\beta_X(m) \) of \(m \) is \(\sigma \)-finite on the set \(\{ f \neq 0 \} \), then \(f \) is \(m \)-integrable if and only if it is \(m^X \)-integrable in the sense of Dobrakov and in this case,
\[
\int_B f \otimes dm = \int_B f dm^X
\]
for every \(B \in \mathcal{B} \) [9, Definition 1.5]. If \(\beta_X(m) \) is finite and continuous, then integral coincide with the Bartle bilinear integral.

We are now in a position to state our general convergence theorem for measure-valued measures. In the next section, we see how they can be simplified under the additional assumption of order boundedness.

Theorem 2.2. (Egorov) Let \((\Sigma, \mathcal{E}) \), \((\Omega, \mathcal{B}) \) be measurable spaces and \(X \) a Banach space. Suppose that \(m : \mathcal{B} \to M(\mathcal{E}) \) is an \(M(\mathcal{E}) \)-valued measure for which \(\beta_X(m)(\Omega) < \infty \) and \(\beta_X(m) \) is continuous. Let \(f_n, f : \Omega \to X, n \in \mathbb{N} \) be \(m \)-measurable functions such that \(f_n \to f \), \(m \)-a.e. Then
a) for any \(\varepsilon > 0 \), there is a set \(B \in \mathcal{B} \) such that \(\beta_X(m)(B^c) < \varepsilon \) and \(f_n \to f \) uniformly on \(B \).

b) \(f_n \to f, \beta_X(m) \)-measure.

Proof. Since \(\beta_X(m) \) is continuous, the set \(\mathcal{M}_1(m^X) \) is uniformly \(\sigma \)-additive on \(\mathcal{B} \). The Bartle-Dunford-Schwartz theorem and equation (2) shows that there is a positive, finite and \(\sigma \)-additive measure \(\lambda \) on \(\mathcal{B} \) such that for any \(\varepsilon > 0 \), there exists a \(\delta > 0 \) such that for all \(F \in \mathcal{B} \) with \(\lambda(F) < \delta \), \(\beta_X(m(F)) < \varepsilon \). Hence by the Egorov theorem for \(\lambda \), for this \(\delta > 0 \), there is \(B \in \mathcal{B} \) such that \(\lambda(B^c) < \delta \) and \(f_n \to f \) uniformly on \(B \), and \(f_n \to f \) in \(\beta_X(m) \)-measure. Thus we have \(\beta_X(m)(B^c) < \varepsilon \) and \(f_n \to f \) in \(\beta_X(m) \)-measure.

Theorem 2.3. (Vitali) Let \((\Sigma, \mathcal{E}), (\Omega, \mathcal{B}) \) be measurable spaces and \(\mathcal{X} \) a Banach space. Suppose that \(m : \mathcal{B} \to \mathcal{M}(\mathcal{E}) \) is an \(\mathcal{M}(\mathcal{E}) \)-valued measure for which \(\beta_X(m)(\Omega) < \infty \) and \(\beta_X(m) \) is continuous. Let \(\langle f_n \rangle \) be a sequence from \(L^1(\beta_X(m)) \) with \(f_n \) \(m \)-integrable functions and let \(f : \Omega \to \mathcal{X} \) be \(m \)-measurable. Assume that

a) \(f_n \to f \) in \(\beta_X(m) \)-measure or

a') \(f_n \to f, m \text{-a.e.} \)

b) \(\lim_{\beta_X(m)(A) \to 0} \beta_X(m)(f_n \chi_A) = 0 \), uniformly for \(n \in \mathbb{N} \).

c) For all \(\varepsilon > 0 \), there is a set \(A_\varepsilon \in \mathcal{B} \) with \(\beta_X(m)(A_\varepsilon) < \infty \), such that \(\beta_X(m)(f_n \chi_{\Omega - A_\varepsilon}) < \varepsilon \), for all \(n \in \mathbb{N} \).

Then \(f \in L^1(\beta_X(m)) \) and \(\beta_X(m)(f_n - f) \to 0 \). Furthermore, the function \(f \) is \(m \)-integrable in \(\mathcal{M}(\mathcal{E}, \mathcal{X}) \) and \(\int_B f_n \otimes dm \to \int_B f \otimes dm \) in \(\mathcal{M}(\mathcal{E}, \mathcal{X}) \), uniformly for \(B \in \mathcal{B} \) as \(n \to \infty \). Conversely, if \(f \in L^1(\beta_X(m)) \) and \(\beta_X(m)(f_n - f) \to 0 \) as \(n \to \infty \), then conditions a) and b) are satisfied.

Proof. By Egorov theorem, a') implies a). Assume conditions a), b) and c) satisfied. To show that \(\langle f_n \rangle \) is a Cauchy sequence in \(L^1(\beta_X(m)) \), let \(\varepsilon > 0 \) and let \(A_\varepsilon \in \mathcal{B} \) be a set satisfying condition c). By condition b) there is a \(\delta > 0 \) for all \(A \in \mathcal{B} \) if \(\beta_X(m)(A) < \delta \) then \(\beta_X(m)(f_n \chi_A) < \varepsilon \) for all \(n \in \mathbb{N} \). By a), there exists \(N_\varepsilon \) such that if

\[
\begin{align*}
B_{n,m} &= \{ s \in A_\varepsilon : ||f_n(s) - f_m(s)||_\mathcal{X} > \varepsilon / \beta_X(m)(A_\varepsilon) \}, \\
\end{align*}
\]

then for all \(n,m \geq N_\varepsilon \), \(B_{n,m} \in \mathcal{B} \) and \(\beta_X(m)(B_{n,m}) < \delta \). Then for \(n,m \geq N_\varepsilon \)

\[
\begin{align*}
\beta_X(m)(f_n - f_m) &\leq \beta_X(m)(f_n - f_m)\chi_{B_{n,m}} + \beta_X(m)(f_n - f_m)\chi_{A_\varepsilon - B_{n,m}} \\
&+ \beta_X(m)(f_n - f_m)\chi_{\Omega - A_\varepsilon} \\
&\leq \beta_X(m)(f_n \chi_{B_{n,m}}) + \beta_X(m)(f_m \chi_{B_{n,m}}) + \beta_X(m)(f_n \chi_{A_\varepsilon - B_{n,m}}) \\
&+ \beta_X(m)(f_n \chi_{\Omega - A_\varepsilon}) + \beta_X(m)(f_m \chi_{\Omega - A_\varepsilon}) \\
&\leq 5\varepsilon.
\end{align*}
\]

Hence \(\langle f_n \rangle \) is a Cauchy sequence in \(L^1(\beta_X(m)) \). In particular, \(\int_B f_n \otimes dm \), \(n = 1, 2, \ldots \), converges for each \(B \in \mathcal{B} \). Since \(L^1(\beta_X(m)) \) is complete, there a
\(m \)-measurable function \(g \) in \(L_1(\beta_\mathcal{X}(m)) \) such that \(\beta_\mathcal{X}(m)(f_n - g) \to 0 \). Then \(f_n \to g \) in \(\beta_\mathcal{X}(m) \)-measure. From a) \(f = g \) \(\beta_\mathcal{X}(m) \)-a.e., \(f \in L_1(\beta_\mathcal{X}(m)) \) and \(\beta_\mathcal{X}(m)(f_n - f) \to 0 \). To check that \(f \) is \(m \)-integrable in \(\mathcal{M}(\mathcal{E}, \mathcal{X}) \), we need to exhibit a sequence \((s_k) \) of \(\mathcal{X} \)-valued \(\mathcal{E} \)-simple functions such that \(s_k \to f \) \(m \)-a.e. as \(k \to \infty \) and the indefinite integrals \(\int s_k \otimes dm \), \(k = 1, 2, \ldots \), are uniformly bounded and uniformly countably additive in \(\mathcal{M}(\mathcal{E}, \mathcal{X}) \). This follows from ([9, Theorem 2.6]), where it is also shown that \(\int_B f_n \otimes dm \to \int_B f \otimes dm \) in \(\mathcal{M}(\mathcal{E}, \mathcal{X}) \), uniformly for \(B \in \mathcal{B} \) as \(n \to \infty \). Conversely, assume that \(f \in L_1(\beta_\mathcal{X}(m)) \) and \(\beta_\mathcal{X}(m)(f_n - f) \to 0 \). Then \(f_n \to f \) in \(\beta_\mathcal{X}(m) \)-measure, so a) is satisfied. To prove b), assume \(f \in L_1(\beta_\mathcal{X}(m)) \). Let \(\varepsilon > 0 \) and let \(N \in \mathbb{N} \) be such that for every \(n \geq N \) \(\beta_\mathcal{X}(m)(f_n - f) < \varepsilon / 2 \). Then for all \(A \in \mathcal{B} \) and \(n \geq N \)

\[
\beta_\mathcal{X}(m)(f_n \chi_A - f \chi_A) < \varepsilon / 2
\]

that is,

\[
\beta_\mathcal{X}(m)(f_n \chi_A) \leq \beta_\mathcal{X}(m)(f \chi_A) + \varepsilon / 2.
\]

But since \(f \in L_1(\beta_\mathcal{X}(m)) \), there is a \(\delta_0 > 0 \) such that \(A \in \mathcal{B} \) and \(\beta_\mathcal{X}(m)(A) < \delta_0 \) then \(\beta_\mathcal{X}(m)(f \chi_A) < \varepsilon / 2 \). Then for \(n \geq N \) and \(\beta_\mathcal{X}(m)(A) < \delta_0 \), \(\beta_\mathcal{X}(m)(f_n \chi_A) < \varepsilon \). For \(n \leq N \), we can find \(\delta_1 > 0 \) such that \(A \in \mathcal{B} \) and \(\beta_\mathcal{X}(m)(A) < \delta_1 \) then \(\beta_\mathcal{X}(m)(f_n \chi_A) < \varepsilon \) for all \(n \leq N \). If we take \(\delta = \inf\{ \delta_0, \delta_1 \} \), then for any \(A \in \mathcal{B} \) with \(\beta_\mathcal{X}(m)(A) < \delta \), \(\beta_\mathcal{X}(m)(f_n \chi_A) < \varepsilon \) for all \(n \in \mathbb{N} \). \(\square \)

3. Order bounded measures

Let \((\Sigma, \mathcal{E}), (\Omega, \mathcal{B}) \) be measurable spaces. A measure-valued measure \(m : \mathcal{B} \to \mathcal{M}(\mathcal{E}) \) is said to be positive if it takes its values in the space \(\mathcal{M}_+(\mathcal{E}) \) of nonnegative measures. We say that \(m \) is order bounded if there exists a positive vector measure, \(n \), for which \(n(A) \geq |m(A)| \) holds for all \(A \in \mathcal{B} \). In the present context, this is equivalent to saying that \(m \) has order bounded range in the Banach lattice \(\mathcal{M}(\mathcal{E}) \), and see ([7, Lemma 4.4.4]). The smallest positive measure \(|m|_\mathcal{M} \) satisfying this requirement is called the modulus of \(m \). It is associated with the modulus of the regular linear map from the Banach lattice \(L_\infty(\Omega, \mathcal{B}) \) to the Banach lattice \(\mathcal{M}(\mathcal{E}) \) defined by integration with respect to \(m \). We write \(|m|_\mathcal{M} \geq |n|_\mathcal{M} \) and say that \(m \) dominates \(n \) if \(|m|_\mathcal{M}(A) \geq |n|_\mathcal{M}(A) \) for all \(A \in \mathcal{B} \). As for the case of \(L^p \)-valued measure [10], the convergence theorems described in Section 2 can be simplified considerably for order bounded measure-valued measures, such as the measures \(V_\phi \) described in Section 1.

Example 3.1. Let \(\phi \in \mathcal{M}(\mathcal{B}(\mathbb{R})) \). Then \(|V_\phi(B)| \leq V_{|\phi|}(B) \) for all \(B \in \mathcal{B} \). Moreover, \(|V_\phi|_\mathcal{M} = V_{|\phi|} \).

The modulus \(|m|_\mathcal{M} \) is easily described.

Lemma 3.2. Let \(m : \mathcal{B} \to \mathcal{M}(\mathcal{E}) \) be a measure-valued measure and let \(\mu \) be the variation of the additive set function

\[
B \times E \mapsto (m(B))(E), \quad B \in \mathcal{B}, E \in \mathcal{E}.
\]
Then \(m \) is order bounded if and only if \(\mu(\Omega \times \Sigma) < \infty \). If \(m \) is order bounded, then the modulus \(|m|_{\mathcal{M}} : \mathcal{B} \to \mathcal{M}_+(\mathcal{E}) \) is given by \((|m|_{\mathcal{M}}(B))(E) = \mu(B \times E) \), for all \(B \in \mathcal{B} \), \(E \in \mathcal{E} \).

Another way of viewing a measure-valued measure is as a bimeasure. In general, the variation \(\mu \) defined in Lemma 3.2 need not be \(\sigma \)-additive. A sufficient condition guaranteeing the \(\sigma \)-additive of \(\mu \) is that \(m \) is regular in each variable. We denote the scalar measure \(B \mapsto (m(B))(E) \), \(B \in \mathcal{B} \), by \(m_E \) for each \(E \in \mathcal{E} \).

Proposition 3.3. Let \(m : \mathcal{B} \to \mathcal{M}_+(\mathcal{E}) \) be a positive measure-valued measure. Then

\[
v_{\mathcal{M}(\mathcal{E})}(m)(B) = \beta_X(m)(B) = v_{\mathcal{L}(X,\mathcal{M}(\mathcal{E},\mathcal{X}))}(m^X)(B) = m_\Sigma(B)
\]

for all \(B \in \mathcal{B} \).

Proof. i)

\[
v(m)(B) = \sup \sum_{j=1}^{n} \|m(B_j \cap B)\| = \sup \left(\sum_{j=1}^{n} m(B_j \cap B)(\Sigma) \right) = m(B)(\Sigma) = m_\Sigma(B).
\]

ii)

\[
\beta_X(m)(B) = \sup_{\{x_j\} \{B_j\}} \|\sum_{j=1}^{n} x_j m(B_j \cap B)\|_{\mathcal{M}(\mathcal{E},\mathcal{X})} = \sup_{\{x_j\} \{B_j\}} \sup_{\{E_k\} \{\sigma^*\} \{B_j\}} \left| \sum_{j,k} c_k(x_j, x^*)(m(B_j \cap B))(E_k) \right| = \sup_{\{x_j\} \{B_j\}} \sup_{\{E_k\} \{\sigma^*\} \{B_j\}} \left| \sum_{j,k} c_k(x_j, x^*) \mu((B_j \cap B) \times E_k) \right| = \sup_{j,k} \left| \langle x_j, x^* \rangle \mu((B_j \cap B) \times E_k) \right| = \sup_{j} \left| \langle x_j, x^* \rangle \mu((B_j \cap B) \times \Sigma) \right| = \sup_{j} \left| \langle x_j, x^* \rangle m_\Sigma(B_j \cap B) \right| = m_\Sigma(B)
\]
where \(c_k \in \mathbb{C} \).

\[
v(m^\mathcal{X})(B) = \sup \sum_{j=1}^{n} \|m(B_j \cap B)\|_{\mathcal{L}(\mathcal{X}, \mathcal{M}(\mathcal{E}, \mathcal{X}))}
= \sup \sum_{j=1}^{n} \sup_{\|x\| \leq 1} \|xm(B_j \cap B)\|_{\mathcal{M}(\mathcal{E}, \mathcal{X})}
= \sup \sum_{j=1}^{n} \sup_{\|x\| \leq 1, \|x^*\| \leq 1} \left| \sum_{k} (x, x^*)c_k m(B_j \cap B)(E_k) \right|
= m_\Sigma(B).
\]

Corollary 3.4. Let \(m : \mathcal{B} \rightarrow \mathcal{M}(\mathcal{E}) \) be an order bounded measure-valued measure with modulus \(\|m\|_\mathcal{M} \). Let \(f : \Omega \rightarrow \mathcal{X} \) be an \((\|m\|_\mathcal{M})^\Sigma \)-Bochner integrable function. Then \(f \) is \(m_E \)-Bochner integrable for each \(E \in \mathcal{E} \) and \(m \)-integrable in \(\mathcal{M}_E(\mathcal{E}, \mathcal{X}) \). The equality

\[
\left(\int_B f \otimes dm \right)(E) = \int_B f dm_E
\]

holds for all \(B \in \mathcal{B} \) and \(E \in \mathcal{E} \). Moreover,

\[
(v_{\mathcal{M}_E(\mathcal{E}, \mathcal{X})}) \left(\int_B f \otimes dm \right)(B) \leq \int_B \|f\|_{\mathcal{X}} dm_{\mathcal{M}(\mathcal{E}, \mathcal{X})}.
\]

Proof. [3, Theorem 6].

For order bounded measure-valued measures \(m \), the \(m \)-integrability of strongly measurable \(\mathcal{X} \)-valued functions is equivalent to their Pettis integrability with respect to an associated scalar measure.

Proposition 3.5. Let \(m : \mathcal{B} \rightarrow \mathcal{M}(\mathcal{E}) \) be an order bounded measure-valued measure with modulus \(\|m\|_\mathcal{M} \). A strongly \(m \)-measurable function \(f : \Omega \rightarrow \mathcal{X} \) is \(m \)-integrable in \(\mathcal{M}(\mathcal{E}, \mathcal{X}) \) if and only if it is Pettis \((\|m\|_\mathcal{M})^\Sigma \)-integrable in \(\mathcal{X} \). In this case, \(f \) is Pettis \(m_E \)-integrable in \(\mathcal{X} \) for each \(E \in \mathcal{E} \) and the equality

\[
\left(\int_B f \otimes dm \right)(E) = \int_B f dm_E
\]

holds for all \(B \in \mathcal{B} \) and \(E \in \mathcal{E} \).

Proof. To show this proposition, it is sufficient to show that

\[
\left(\int_B f \otimes dm \right)(E) = \int_B f(t)\mu(dt \times E).
\]

Since all simple functions are \(m^\mathcal{X} \)-integrable, above equality is true for simple \(f_n \). As general proof method of integral, it is satisfying the equality for the function \(f \) such that simple functions \(f_n \) converges to \(f \) \(m^\mathcal{X} \)-a.e. And \(\{(f_n m^\mathcal{X})(\cdot)(E) : E \in \mathcal{E}, n = 1, 2, \ldots\} \) is uniformly countably additive if and
only if \(\{ \int |(f_n, x^*)| \mu(dt \times E) : \|x^*\| \leq 1, n = 1, 2, \ldots \} \) is uniformly countably additive if and only if \(f \) is \(m_\Sigma \)-Pettis integrable. \(\square \)

Remark 3.6. If \(m \) is positive and \(\beta_X(m)(f) < \infty \), then \(\int_\Omega \|f\|_X dm_\Sigma < \infty \). See [4].

Proposition 3.7. Let \(m : B \to \mathcal{M}(E) \) be an order bounded measure-valued measure. Then for any Banach space \(X \), we have \(\beta_X(m)(\Omega) < \infty \) and \(\beta_X(m) \) is continuous.

Proof. We have

\[
\beta_X(m)(E) = \sup\{ \sum_{j,k} \langle x_k m(B_k \cap E)(B_j), x_j^* \rangle : \|x_k\|, \|x_j^*\| \leq 1 \}
\]

\[
\leq (|m|_E)(\Sigma)
\]

\[
\leq (|m|_E)_\Sigma(E),
\]

so \(\beta_X(m)(\Omega) \) is finite. Because \(|m|_E : B \to \mathcal{M}_+(E) \) is a measure, it follows that \(\beta_X(m) \) is continuous. \(\square \)

For order bounded measure-valued measures, we have the following simplified versions of the convergence theorem of Section 2. We state them without proof.

Theorem 3.8. (Egorov) Let \((\Sigma, E), (\Omega, B)\) be measurable spaces and \(X \) a Banach space. Suppose that \(m : B \to \mathcal{M}(E) \) is an order bounded \(\mathcal{M}(E) \)-valued measure. Let \(f_n, f : \Omega \to X, n \in \mathbb{N} \) be \(m \)-measurable functions such that \(f_n \to f \), \(m \)-a.e. Then a) for any \(\varepsilon > 0 \), there is a set \(B \in \mathcal{B} \) such that \(\beta_X(m)(B^c) < \varepsilon \) and \(f_n \to f \) uniformly on \(B \). b) \(f_n \to f, \beta_X(m) \)-measure.

Theorem 3.9. (Vitali) Let \((\Sigma, E), (\Omega, B)\) be measurable spaces and \(X \) a Banach space. Suppose that \(m : B \to \mathcal{M}(E) \) is an order bounded \(\mathcal{M}(E) \)-valued measure with modulus \(|m|_E\). Let \((f_n) \) be a sequence from \(\mathcal{L}_1(\beta_X(m)) \) with \(f_n \) Pettis \(|m|_E\)-integrable functions and let \(f : \Omega \to X \) be \(m \)-measurable. Assume that a) \(f_n \to f \) in \(\beta_X(m) \)-measure or a') \(f_n \to f \), \(m \)-a.e. b) \(\lim_{n \to \infty} \beta_X(m)(f_n) = 0, \) uniformly for \(n \in \mathbb{N} \). Then \(f \in \mathcal{L}_1(\beta_X(m)) \) and \(\beta_X(m)(f_n - f) \to 0 \). Furthermore, the function \(f \) is \(m \)-integrable in \(\mathcal{M}(E, X) \) and \(\int_B f \otimes dm \to \int_B f \otimes dm \in \mathcal{M}(E, X) \), uniformly for \(B \in \mathcal{B} \) as \(n \to \infty \). Conversely, if \(f \in \mathcal{L}_1(\beta_X(m)) \) and \(\beta_X(m)(f_n - f) \to 0 \) as \(n \to \infty \), then conditions a) and b) are satisfied.

References

Man Kyu Im
Department of Mathematics
Han Nam University
Daejon 306-791, Korea
E-mail address: mki@hanam.ac.kr

Brian Jefferies
School of Mathematics
The University of New South Wales
NSW 2052, Australia
E-mail address: b.jefferies@unsw.edu.au