HVPE growth of GaN/InGaN heterostructure on r-plane sapphire substrate

R-plane 사파이어 기판위의 GaN/InGaN 이종접합구조의 HVPE 성장

  • Jeon, H.S. (Department of Applied Sciences, Korea Maritime University) ;
  • Hwang, S.L. (Department of Applied Sciences, Korea Maritime University) ;
  • Kim, K.H. (Department of Applied Sciences, Korea Maritime University) ;
  • Jang, K.S. (Department of Applied Sciences, Korea Maritime University) ;
  • Lee, C.H. (Department of Applied Sciences, Korea Maritime University) ;
  • Yang, M. (Department of Applied Sciences, Korea Maritime University) ;
  • Ahn, H.S. (Department of Applied Sciences, Korea Maritime University) ;
  • Kim, S.W. (Department of Physics, Andong National University) ;
  • Jang, S.H. (Samsung Electro-Mechanics Co., Ltd.) ;
  • Lee, S.M. (Samsung Electro-Mechanics Co., Ltd.) ;
  • Park, G.H. (Samsung Electro-Mechanics Co., Ltd.) ;
  • Koike, M. (Samsung Electro-Mechanics Co., Ltd.)
  • 전헌수 (한국해양대학교 반도체물리학과) ;
  • 황선령 (한국해양대학교 반도체물리학과) ;
  • 김경화 (한국해양대학교 반도체물리학과) ;
  • 장근숙 (한국해양대학교 반도체물리학과) ;
  • 이충현 (한국해양대학교 반도체물리학과) ;
  • 양민 (국해양대학교 반도체물리학과) ;
  • 안형수 (한국해양대학교 반도체물리학과) ;
  • 김석환 (안동대학교 물리학과) ;
  • 장성환 (삼성전기) ;
  • 이수민 (삼성전기) ;
  • 박길한 (삼성전기) ;
  • Published : 2007.02.28

Abstract

The a-plane GaN layer on r-plane $Al_2O_3$ substrate is grown by mixed-source hydride vapor phase epitaxy (HVPE). The GaN/InGaN heterostructure is performed by selective area growth (SAG) method. The heterostructure consists of a flown over mixed-sourec are used as gallium (or indium) and nitrogen sources. The gas flow rates of HCl and $NH_3$ are maintained at 10 sccm and 500 sccm, respectively. The temperatures of GaN source zone is $650^{\circ}C$. In case of InGaN, the temperature of source zone is $900^{\circ}C$. The grown temperatures of GaN and InGaN layer are $820^{\circ}C\;and\;850^{\circ}C$, respectively. The EL (electroluminescence) peak of GaN/InGaN heterostructure is at nearly 460 nm and the FWHM (full width at half maximum) is 0.67 eV. These results are demonstrated that the heterostructure of III-nitrides on r-plane sapphire can be successfully grown by mixed-source HVPE with multi-sliding boat system.

R-plane 사파이어 위에 a-plane GaN층이 성장된 기판에 혼합소스 HVPE(mixed-source hydride vapor phase epitaxy) 방법으로 GaN/InGaN의 이종접합구조(heterostructure)를 구현하였다. GaN/InGaN 이종접합구조는 GaN, InGaN, Mg-doped GaN 층으로 구성되어 있다. 각 층의 성장온도는 GaN층은 $820^{\circ}C$, InGaN 층은 $850^{\circ}C$, Mg-doped GaN 층은 $1050^{\circ}C$에서 성장하였다. 이때의 $NH_3$와 HCl 가스의 유량은 각각 500 sccm, 10 sccm 이었다. SAG-GaN/InGaN 이종접합구조의 상온 EL (electroluminescence) 특성은 중심파장은 462 nm, 반치폭(FWHM : full width at half maximum) 은 0.67eV 이었다. 이 결과로부터 r-plane 사파이어 기판위에 multi-sliding boat system의 혼합소스 HVPE 방법으로 이종접합구조의 성장이 가능함을 확인하였다.

Keywords

References

  1. M.M. Wong, J.C. Denyszyn, CJ. Collins, U. Chowdhury, TG. Zhu, K.S. Kim and R.D. Dupuis, 'AIGaN/AIGaN double-heterojunction ultraviolet light-emitting diodes grown by metal organic chemical vapour deposition', Electron. Lett. 37 (2001) 1188 https://doi.org/10.1049/el:20010779
  2. A. Kinoshita, H. Hirayama, M. Ainoya, Y. Aoyagi and A. Hirata, 'Room-temperature operation at 333 nm of $Al_{0.03}Ga_{0.97}N/Al_{0.25}Ga_{0.75}N$ quantum-well light-emitting diodes with Mg-doped superlattice layers', App J. Phys. Lett. 77 (2000) 175 https://doi.org/10.1063/1.126915
  3. T Nishida, H. Saito and N. Kobayashi, 'Efficient and high-power AIGaN-based ultraviolet light-emitting diode grown on bulk GaN', Appl, Phys. Lett. 79 (2001) 711 https://doi.org/10.1063/1.1390485
  4. TG. Zhu, J.C Denyszyn, U. Chowdhury, U. Chowdhury, M.M. Wong and R.D. Dupuis, 'AlGaN-GaN UV lightemitting diodes grown on SiC by metal-organic chemical vapor deposition', IEEE J. Sele. Topic. Quant. Electron. 8 (2002) 298 https://doi.org/10.1109/2944.999184
  5. YJ. Yu, M.Y. Ryu, P.W Yu, D.J. Kim and SJ. Park, 'Optical investigation of InGaN/GaN quantum well structures with various barrier widths', J. Korean Phys. Soc. 38 (2001) 134
  6. H.M. Kim, J.S. Choi, J.E. Oh and TK. Yoo, 'Cathodoluminescence characterization of GaN thick films grown by using the HVPE method', J. Korean Phys. Soc. 37 (2000) 956 https://doi.org/10.3938/jkps.37.956
  7. R. Langer, J. Simon, V. Ortiz, N. T Pelekanos, A. Barski, R. Andre and M. Godlewski, 'Giant electric fields in unstrained GaN single quantum wells', Appl. Phys. Lett. 74 (1999) 3827 https://doi.org/10.1063/1.124193
  8. M.D. Craven, S.H. Lim, F. Wu, J.S. Speck and S.P. DenBaars, 'Structural characterization of nonpolar (11-20) $\alpha$-plane GaN thin films grown on (1-102) $\gamma$-plane sapphire', Appl, Phys. Lett. 81 (2002) 469 https://doi.org/10.1063/1.1493220
  9. H.M. Ng, 'Molecular-beam epitaxy of GaN/$Al_{x}Ga_{1-x}N$ multiple quantum wells on R-plane (10-12) sapphire substrates', Appl. Phys. Lett. 80 (2002) 4369 https://doi.org/10.1063/1.1427427
  10. B.A. Haskell, F. Wu, S. Matsuda, M.D. Craven, P.T Fini, S.P. Denbarrs, J.S. Speck and S. Nakamura, 'Structural and morphological characteristics of planar (11-20) $\alpha$-plane gallium nitride grown by hydride vapor phase epitaxy', Appl. Phys. Lett. 83 (2003) 1554 https://doi.org/10.1063/1.1604174
  11. K. Xu, J Xu, P.Z. Deng, R.S. Qui and ZJ. Fang, 'MOCVD growth of GaN on $LiAlO_{2}$ (100) substrates', Phys. Status Solidi A 176 (1999) 589 https://doi.org/10.1002/(SICI)1521-396X(199911)176:1<589::AID-PSSA589>3.0.CO;2-J
  12. H.M. Wang, C.Q. Chen, Z. Gong, J.P. Zhang, M. Gaevski, M. Su, J.W Yang and M.A. Khan, 'Anisotropic structural characteristics of (11-20) GaN templates and coalesced epitaxial lateral overgrown films deposited on (10-12) sapphire', Appl. Phys. Lett. 84 (2004) 499 https://doi.org/10.1063/1.1644054
  13. T. Paskova, V. Darakchieva, P.P. Paskov, J. Birch, E. Valcheva, P.O.A. Pearson, B. Amaudov, S. Tungasmitta and B. Monemar, 'Properties of nonpolar $\alpha$-plane GaN films grown by HVPE with AIN buffers', J. Cryst. Growth 281 (2005) 55 https://doi.org/10.1016/j.jcrysgro.2005.03.013
  14. B.S. Ahn, K.H. Kim, M. Yang, J.Y. Yi, H.J. Lee, C.R. Cho, H.K. Cho, S.W. Kim, T. Narita, Y. Honda, M. Yamaguchi and N. Sawaki, 'Growth of thick Alan by mixed-source hydride vapor phase epitaxy', Appl. Surf. Sci. 243 (2005) 178 https://doi.org/10.1016/j.apsusc.2004.09.117
  15. K.P. O'Donnell, I. Femadez-Torrente, P.R. Edwards and R.W, Martin, 'The composition dependence of the $In_{x}Ga_{1-x}N$ bandgap', J. Cryst. Growth 269 (2004) 100