Fabrication of axially aligned $TiO_2/PVP$ nanofibers

$TiO_2/PVP$ 나노섬유의 제조

  • Lee, Se-Jong (Department of Advanced Materials Engineering, Kyungsung University)
  • Published : 2007.02.28

Abstract

[ $TiO_2/PVP$ ] nanofibers were electrospun by varying the collector grounding design to improve the axial alignment of fibers. The collectors are composed of two pieces of conductive substrates separated by a gap f3r the uniaxial alignment of fibers (X design). The collectors consisting of two sets of substrates placed by $90^{\circ}$ (XY design) equipped with a timer are also prepared for biaxial alignment of fibers. Both collectors show that the charged nanofibers are stretched to span across the gap between the electrodes. Experimental results reveal that the latter collector is more effective on the directionality of electrospun $TiO_2/PVP$ nanofibers due to the dissipation of accumulated electric charge between the collectors.

[ $TiO_2/PVP$ ] 나노섬유의 배열을 증진시키기 위하여 콜렉터 접지방법을 변화시키면서 전기방사하였다. 한축방향의 배열을 가진 섬유를 만들기 위하여 두개의 전도성 기판을 콜렉터로 사용하여 전기방사하였다. 또한, 두축방향의 섬유배열을 하기 위하여 $90^{\circ}$ 각도로 배치된 콜렉터를 타이머로 조절하면서 방사하였다. 전기방사 시 나노섬유는 콜렉터 전극사이에서 전기장 효과에 의해 퍼지는 현상이 관찰되었다. 실험결과, 후자의 $TiO_2/PVP$ 나노섬유 경우 콜렉터에 정체된 전하의 해소로 인하여 방향성에 더 효과적이었다.

Keywords

References

  1. S. Iijima, 'Helical microtubules of graphitic carbon', Nature 354 (1991) 56 https://doi.org/10.1038/354056a0
  2. Z.L. Wang, ''Nanostructures of zinc oxides', Materials Today (2004) 26
  3. S. Bae, S. Lee, S. Cho and D.Y. Lee, 'Growth of carbon nanotubes on different catalytic substrates', J. Kor. Ceram. Soc. 41 (2004) 247 https://doi.org/10.4191/KCERS.2004.41.3.247
  4. D.Y. Lee, S. Heo, K. Kim, D. Kim, M. Lee and S. Lee, 'Electrically controllable biomimetic actuators made with multiwalled carbon nanotube loaded ionomeric nanocomposites', Key Eng. Mater. 284-286 (2005) 733
  5. D.Y. Lee, M. Lee, K. Kim, S. Heo, B. Kim and S. Lee, 'Effect of multiwalled carbon nanotube(M-CNT) loading on M-CNT distribution behavior and the related electromechanical properties of the M-CNT dispersed ionomeric nanocomposites', Surf. Coat. Technol. 200 (2005) 1920 https://doi.org/10.1016/j.surfcoat.2005.08.024
  6. S. Kim, Y. Choi, Y. Song, D.Y. Lee and S. Lee, 'Influence of sputtering parameters on microstructure and morphology of $TiO_{2}$ thin films', Mater. Lett. 57 (2002) 343 https://doi.org/10.1016/S0167-577X(02)00788-7
  7. H. Choi, S. Kim, Y. Song and D.Y. Lee, 'Photodecomposition and bactericidal effects of $TiO_{2}$ thin films prepared by a magnetron sputtering', J. Mater. Sci. 39 (2004) 5695 https://doi.org/10.1023/B:JMSC.0000040078.09843.cb
  8. Y. Song, S. Kim, B. Kim and D.Y. Lee, 'Hydrophilicity and bactericidal effects of $TiO_{2}$ thin films prepared by RF sputtering', Mater. Sci. Forum 449-452 (2004) 1261
  9. Y. Chen, Z. Sun, Ye Yang and Q. Ke, 'Heterogeneous photocatalytic oxidation of polyvinyl alcohol in water', J. Photochem. and Photobiology A: Chem. 142 (2001) 85 https://doi.org/10.1016/S1010-6030(01)00477-4
  10. H. Fong, I. Chun and D.H. Reneker, 'Beaded nanofibers formed during electrospinning', Polymer 40 (1999) 4585 https://doi.org/10.1016/S0032-3861(99)00068-3
  11. G Li, K. Takashima, S. Katsura and A. Mizuno, 'Electrostatic assisted formation of porous ceramic film', J. Mater. Sci. 29 (2004) 4067
  12. X. Wang, C. Drew, S. Lee, KJ. Senecal, J. Kumar and L.A. Samuelson, 'Electrospun nanofibrous membranes for highly sensitive optical sensors', Nano Lett. 2 (2002) 1273 https://doi.org/10.1021/nl020216u
  13. L.T. Cherney, 'Structure of taylor cone-jets: limit of low flow rates', J. Fluid Mech. 378 (1999) 167 https://doi.org/10.1017/S002211209800319X
  14. M.M. Hohman, M. Shin, G Rutledge and M.P. Brenner, 'Electrospinning and electrically forced jets. I. Stability theory', Phys. Fluids 13 (2001) 2201 https://doi.org/10.1063/1.1383791
  15. M.M. Hohman, M. Shin, G Rutledge and M.P. Brenner, 'Electrospinning and electrically forced jets. II. Applications', Phys. Fluids 13 (2001) 2221 https://doi.org/10.1063/1.1384013
  16. C. Drew, X. Liu, D. Ziegler, X. Wang, F.F. Bruno, J. Whitten, L.A. Samuelson and J. Kumar, 'Metal oxidecoated polymer nanofibers', Nano Lett. 3 (2003) 143 https://doi.org/10.1021/nl025850m
  17. D. Li and Y. Xia, 'Fabrication of titania nanofibers by electrospinning', Nano Lett. 3 (2003) 555 https://doi.org/10.1021/nl034039o
  18. S. Kim, D.Y. Lee, M. Lee, S. Lee and B. Kim, 'Fabrication of electrospun titania nanofiber', J. Kor. Ceram. Soc. 42 (2005) 548 https://doi.org/10.4191/KCERS.2005.42.8.548
  19. D.Y. Lee, B. Kim, S. Lee, M. Lee, Y. Song and J. Lee, 'Titania nanofibers prepared by electrospinning', J. Kor. Phys. Soc. 48 (2006) 1686
  20. A. Theron, E. Zussman and A.L. Yarin, 'Electrostatic field-assisted alignment of electrospun nanofibers', Nanotechnol, 12 (2001) 384 https://doi.org/10.1088/0957-4484/12/3/329
  21. GE. Wnek, M.E. Carr, D.G. Simpson and G.L. Bowlin, 'Electrospinning of nanofiber fibrinogen structures', Nano Lett. 3 (2003) 213 https://doi.org/10.1021/nl025866c