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Purpose: This sludy examined the correlation hetween the maximum voluntary isometric contraction (MVIC)
and the muscle architeclure in the extensor carpi radialis longus muscle during MVIC,

Methods: The muscle area, volume and density were measured using a ultrasound imaging system to
obtain the muscle architeclure during the MVIC. For the mechanical muscle strength measurements, the
MVIC was obtained using a dynamometer,

Results: There was a significant correlation between the MVIC and the muscle area (r=0.498 p<0.01) and
muscle volume (r=0.602, p<0.001). There was a significant correlation between the MVIC and density (r=—
0.429, p<0.05). The area showed signilicant correlations with the muscle volume (r=0.699, p<0.001) and

density (r==0.429, p<0.05). In addition, there was a correlation between the volume and muscle density {(r=—
0.585, p<0.01.

Conclusion: There is close relationship between the MVIC and the muscle architecture in the extensor carpi
radialis longus muscle during the MVIC.
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(Grabiner et al, 2005; Gross et al, 1998; Hodges et
al, 2003; Hughes et al, 1996, Kotake et al, 1993
Pavol et al, 2002; Schultz et al, 1992; Wojcik et al,
2001; Zheng et al, 2006). Several methods have

I. Introduction

The voluntary muscle function and structure of
the whole muscle activity is a fundamental com-—

ponent of human physical capabilities. In an effort
to understand the importance of the capacity in
selected activities, many studies have examined
the torque and structure, comparing these torques
to the strength values and imaging analyses

been developed to evaluate the muscle morphology
and function (Cooper et al, 1988: Oka, 1996;
Reimers, 1999),

Mechanomyography and a dynamometer, which
mainly reflects the mechanical properties of a
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muscle, have proven to be useful tools for inter—
preting the muscle mechanical activities and their
varying characteristics in both dynamic and static
muscle contractions (Hu et al, 2007; Mademli &
Arampatzis, 2006; Stafilidis & Arampatzis, 2007;
Vedsted et al. 2006), Some studies recommended a
maximum voluntary isometric contraction (MVIC)
method to measure the muscle torque because it
represented the absolute demands required for a
specific task while others advocated a dynamic
method because it reduced inter subject variability
and provided information on the pattern of muscle
activation during a task (Burden et al, 2003;
Knutson et al, 1994; Winter & Yack, 1987: Yang &
Winter, 1984). Prior work has shown that the use
of a MVIC method can provide a reliable measure
of the muscular demands during a specific lower
extremity task or exercise (Earl et al, 2001;
Knutson et al, 1994),

A study of the neuromuscular structure and
morphological imaging employs three techniques:
An ultrasound imaging system (sonography), com—
puterized tomography (CT) and magnetic reso—
nance imaging (MRD)(Monetti, 1997). Currently,
sonography examinations have the advantages of
low cost, non-invasive and easy access, and the
possibility of a dynamic examination (Monetti,
1997). Sonography has been used since the early
1990s to measure the changes in muscle thickness,
muscle fiber pennation angle, muscle fascicle
length, and muscle cross—sectional area during
isometric and dynamic contractions (Fukunaga et
al, 1997: Hodges et al, 2003: Ito et al, 1998;
Maganaris et al, 2002; Narici et al, 1996; Reeves
et al, 2004; Zheng et al, 2006). A musculoskeletal
ultrasound tissue assessment is normally focused
on the static or quasi—static examination muscles,
tendons and other tissues (Van Holsbeeck &
Introcaso, 2001). Ultrasound imaging has also
been used to assess the movement of muscles
(Hodges et al, 2003). The dynamic changes in the
muscle cross—sectional area can alsc be obtained
directly from the ultrasound images by improving
the ultrasound technique (Zheng et al, 2006). A
recent study definedthe mechanical (muscle
strength) and morphological (density, pennation

angle, muscle thickness) properties (Mademli &
Arampatzis, 2006; Stafilidis & Arampatzis, 2007)
but gave no conclusion for the correlation between
the mechanical properties and morphological
properties of a muscle, Therefore, this study
examined the relationship between the MVIC and
muscle architecture in the extensor carpi radialis
longus (ECRL) muscle during the MVIC,

I. Methods
1. Subjects

Twenty seven subjects (12 male and 15 female)
were enrolled in this study. The subjects were col—
lected arbitrarily in a group (n=27; age, 21.63=%
1.86 years; height 167.37£9.11 c¢m; weight, 58 11+
9.86 kg)(Table 1). The subjects were normally
active and volunteered to participate in the study.

Table 1. Subjects’ characteristics

Agelyears) Height(em) Weightlke)

Mean+8D 21.63+1.86 167.37+£9.11 58.11+£9.86

2. Methods

The subjects were seated comfortably in a chair.
Their elbows were flexed at 80~100°. Their right
forearms were placed and fixed on a support with
their palms down during the test. Their ECRL
muscle maximum torques was measured using a
dynamometer (JLW Instruments Inc., CS200
Dynamometer, USA). The MVICs were performed
three times at one minute intervals, The partici—
pants were instructed to perform each MVIC as
quickly and powerfully as possible. The average of
the three trials was used as the MVIC criterion.
These instructions and methods were used for all
subsequent measurements of the MVIC strength.
The experimental measurements were taken using
an ultrasound imaging system (sonography)
(Medison Co., SONOACE 6000, Korea). Sonogra-
phy was performed from the muscle belly of the
right ECRL during isometric contractions of 100%
MVC(Figure 1). The sonograph of the cross—sec—
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tional area of the ECRL was recorded using a B—
mode ultrasound scanner with a 7.5 MHz linear
transducer. The right ECRL morphology and
thickness was measured at the cross section
areas. In order to quantify the muscle aspect, the
muscle aspect parameters, such as the muscle
area, volume, and density, were defined and cal-
culated using digital image analysis. To calculate
the mean mid—-belly cross sectional area, the vol—
ume of a three-sliced section of a muscle image,
which was equidistant (3 c¢cm) from either end of
the complete image, was divided by three times
the slice thickness(Figure 2). Image analysis was
performed using integrated software, image pro
plus 4.1(Media Cybernetics, USA) after resizing
the collected images to 332 310 pixels through
photoshop CS (Adobe, USA). Using this software,
the density of the muscles was averaged at the

mid belly cross sectional areas (Maurits et al,
2004)(Figure 3).

Figure 2, Measurement of the ECRL cross section area

V=1/3-d-[a+{ab) +b]

V volume, d = 3cm (between a and b)

volume of the entire ECRL = summing up all of
the inter—cross section area volumes

S e e - Cna

Figure 3. Measurement of the ECRL cross section area
Pixel value : 1-255, O : Pure Black, 255 : Pure
White
Density = Total pixel values / Total pixel number

3. Statistical Analysis

The Pearsons correlation coefficient was used to
estimate the correlation between the MVIC, mus—
cle area, volume and density. All analyses were
carried out using SPSS v 12.0 with the level of
significance set to 0.05.

II. Results

Figure 4, 5 and 6 show the relationship between
MVIC and the sonography measures, There was a
good correlation between the MVIC and muscle
volume (r=0.602, p<0.001)(Figure 5), suggesting a
strong relationship between the muscle strength
and the architecture during MVIC activity. There
was a significant correlation between MVIC and
the muscle area (r=0.498, p<0.01)(Figure 4). In
addition, there was a significant correlation
between MVIC and density (r=p<0.05)Figure 6). A
comparison with MVIC showed that the volume
value had a larger slope than the area.
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Significant correlations were found in the
sonography measurements during maximum vol-
untary muscle contraction (Figure 7, 8, 9). The
correlation between the muscle volume and muscle
area was higher (r=0.699, p<0.00D)(Figure 7),
suggesting a strong relationship between the
muscle size and architecture during the MVIC
activity. The correlations between the muscle
density versus muscle area and volume were simi—
lar, with r values ranging from -0.512 (p<0.05)
(Figure 8) to —0.555 (p<0.01)(Figure 9).
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Figure 8. Relationships between Area and Density
r = -0.512
p <0.01
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V. Discussion

In this study, 27 healthy adults were examined
using a dynamometer and ultrasound (US) imag—
ing to obtain reference values of the muscle para-—
meters. For a mechanical muscle aspect, the MVIC
was measured in ECRL. In order to quantify the
muscle aspect, the muscle area and volume were
defined and calculated by sonography. The muscle
density was measured by sonography to obtain the
muscle quality aspect of the muscle.

In order to achieve the MVIC, all motor units
must be recruited (Sbriccoli et al, 2003),
Therefore, MVIC reflects the mechanical torque of
a muscle (Vedsted et al, 2006), In this study, the
MVIC values were easily reproducible and the
reliable indices were similar to those obtained
from other studies (Strimpakos et al, 2004). There
was a significant correlation between the MVIC
and the ultrasound imaging measurements. The
volume of a specific muscle can be assumed to be
constant during muscle contractions (Kardel,
1990). De Haan et al.(1988) concluded that longer
muscles with similar cross sectional areas would
have higher energy consumption during isometric
contractions at the same percentage of MVIC due
to the larger number of musclesin series sarcom—

eres, Therefore, among the various possible indi—
cators of Henneman's size principle, the conduc—
tion velocity was recently validated under muscle
activity force (Farina et al, 2007). For this reason,
the muscle area and volume increased with
increasing MVIC (Figure 4, 5). The correlation
between the MVIC and muscle volume became
higher, suggesting a strong relationship between
the mechanical aspects of a muscle and the struc—
tural aspect of a muscle during the maximum
muscle contraction.

The muscle shape parameters are structural
measures of a muscle used to infer functional
properties. Muscle structure research considers
the size and arrangement of muscle fibers to be
important determinants of the whole muscle func—
tion (Delp et al, 2001; Fukunaga et al, 1997;
Kawakami et al, 2000). The movement of individ-
ual muscles can be observed using ultrasound,
which can detect morphological changes in the
underlying soft tissues. Previous studies aimed at
differentiation between normal and pathological
muscle between myopathies and neuropathies
were based largely on quantifying the parameters
including muscle thickness, density or inhomo-
geneity (Dock et al, 1990; Maurits et al, 2003;
Maurits et al, 2004; Pillen et al, 2003; Schmidt &
Voit, 1993; Scholten et al, 2003). Neurogenic dis-
orders produce a characteristic pattern with
increased inhomogeneity and the juxtaposition of
hypo~ and hyper—echoic areas, which reflect the
grouping of fiber types into atrophic fibers
(hyper—echoic, bright areas) and hypertrophic
fibers (hypo-—echoic, black areas)(Knut et al,
2007). Muscular dystrophies are characterized by
an extensive homogeneous echo hyper—density,
resulting in a loss of visibility of the bone and
fascial echoes (Knut et al, 2007). An abnormal
muscle shows more hyper—density than the nor—
mal muscle, Therefore, there was a significant
correlation between the MVIC muscle area and
muscle volume with density (Figure 6, 8, 9).

Sonography can show the muscle size, abnor—
malities of the muscle mesenchyma, and muscular
hyperkinesias (Reimers, 1999). This study mea-—
sured the area, volume and muscle density using
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sonography, and used a dynamometer to obtain
the MVIC. It is evident that these relationships
are important factors in the architecture and
morphology of muscles, which require due consid—
eration in a patient's assessment. The potential
applications of the characteristic muscle need to
be confirmed with more experiments on subjects
with different genders, ages, and pathological
conditions,

V. Conclusion

MVIC measurements can provide information on
the muscle structure and morphology, all of which
reflect the strength of the entire muscle function
through the muscle cross section area, volume and
density. Sonography can also provide information
on the muscle architecture from each measure—
ment, These results revealed a strong correlation
between the mechanical properties and the muscle
architecture,
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