DOI QR코드

DOI QR Code

Effect of Deposition Parameters on the Property of SiC Layer in TRISO-Coated Particles

TRISO 피복 입자에서 증착 조건이 탄화규소층의 특성에 미치는 영향

  • Park, J.H. (Nuclear Materials Technology Development Division, Korea Atomic Energy Research Institute) ;
  • Kim, W.J. (Nuclear Materials Technology Development Division, Korea Atomic Energy Research Institute) ;
  • Park, J.N. (Nuclear Materials Technology Development Division, Korea Atomic Energy Research Institute) ;
  • Park, K.H. (Nuclear Materials Technology Development Division, Korea Atomic Energy Research Institute) ;
  • Park, J.Y. (Nuclear Materials Technology Development Division, Korea Atomic Energy Research Institute) ;
  • Lee, Y.W. (HTGR Fuel Development Division, Korea Atomic Energy Research Institute)
  • 박종훈 (한국원자력연구소 원자력재료기술개발부) ;
  • 김원주 (한국원자력연구소 원자력재료기술개발부) ;
  • 박정남 (한국원자력연구소 원자력재료기술개발부) ;
  • 박경환 (한국원자력연구소 원자력재료기술개발부) ;
  • 박지연 (한국원자력연구소 원자력재료기술개발부) ;
  • 이영우 (한국원자력연구원 입자연료개발부)
  • Published : 2007.03.27

Abstract

TRISO coatings on $ZrO_{2}$ surrogate kernels were conducted by a fluidized-bed chemical vapor deposition (FBCVD) method. Effects of the deposition temperature and the gas flow rate on the properties of SiC layer were investigated in the TRISO-coated particles. Deposition rate of the SiC layer decreased as the deposition temperature increased in the temperature range of $1460^{\circ}-1550^{\circ}C$. At the deposition temperature of $1550^{\circ}C$ the SiC layer contained an excess carbon, whereas the SiC layers had stoichiometric compositions at $1460^{\circ}C\;and\;1500^{\circ}C$. Hardness and elastic modulus measured by a nanoindentation method were the highest in the SiC layer deposited at $1500^{\circ}C$. The SiC layer deposited at the gas flow rate of 4000 sccm exhibited a high porosity and contained large pores more than $1{\mu}m$, being due to a violent spouting of particles. On the other hand, the SiC layer deposited at 2500 sccm revealed the lowest porosity.

Keywords

References

  1. A Technology Roadmap for Generation IV Nuclear Energy Systems, Generation IV International Forum, GIF-002-00 (2002)
  2. R&D Program Plan for the Very High Temperature Reactor (VHTR), Generation IV International Forum (2004)
  3. T. D. Gulden, C. L. Smith and D. P. Harmon, Nucl. Technol., 16, 100 (1972)
  4. H. Nabielek, W. Kuhnlein, W. Schenk, W. Heit, A. Christ and H. Ragoss, Nucl. Eng. Des., 121, 199 (1990) https://doi.org/10.1016/0029-5493(90)90105-7
  5. G. K. Miller, D. A. Petti, D. J. Varacalle Jr. and J. T. Maki, J. Nucl. Mater., 317, 69 (2003) https://doi.org/10.1016/S0022-3115(02)01702-6
  6. R. J. Price, Nucl. Technol., 35, 320 (1977)
  7. K. Minato and K. Fukuda, J. Nucl. Mater., 149, 233 (1987) https://doi.org/10.1016/0022-3115(87)90482-X
  8. Y. J. Lee, D. J. Choi, J. Y. Park and G. W. Hong, J. Mater. Sci., 35, 4519 (2000) https://doi.org/10.1023/A:1004808418609
  9. S. J. Xu, J. G Zhou, B. Yang and B. Z. Zhang, J. Nucl. Mater., 224, 12 (1995) https://doi.org/10.1016/0022-3115(95)00039-9
  10. M. L. Hitchman and K. F. Jensen, Chemical Vapor Deposition-Principles and Applications, p. 31, Academic Press, London, England (1993)
  11. W. -J. Kim, J. Y. Park, J. I. Kim, K. W. Hong and J. W. Ha, J. Kor. Ceram. Soc., 38 (4), 485 (2001)
  12. D. J. Cheng, W. J. Shyy, D. H. Kuo and M. H. Han, J. Electrochem. Soc., 134 (12), 3145 (1987) https://doi.org/10.1149/1.2100359
  13. K. Minato and K. Fukuda, Adv. Mater. Manuf. Proc., 3 (4),617 (1988) https://doi.org/10.1080/10426918808953221
  14. T. D. Gulden, J. Am. Ceram. Soc., 51, 424 (1968) https://doi.org/10.1111/j.1151-2916.1968.tb11911.x