Characterization of a Heavy Metal-Resistant and Plant Growth-Promoting Rhizobacterium, Methylobacterium sp. SY-NiR1

중금속 내성 및 식물 생장 향상 근권세균 Methylobacterium sp. SY-NiR1의 분리 및 특성

  • Koo, So-Yeon (Department of Environmental Science and Engineering, Ewha Womans University) ;
  • Cho, Kyung-Suk (Department of Environmental Science and Engineering, Ewha Womans University)
  • 구소연 (이화여자대학교 환경학과) ;
  • 조경숙 (이화여자대학교 환경학과)
  • Published : 2007.03.28

Abstract

The role of soil microorganisms, specifically rhizobacteria, in the development of rhizoremediation techniques is important to speed up the process and to increase the rate of mobilization or absorption of heavy metals to the plant. In this study, Methylobacterium sp. SY-NiR1 was isolated from the rhizosphere soils of plants in oil and heavy metal-contaminated soil. Based on its pink pigmented colony, rod-shape cells, and belonging in $\alpha-Proteobacteria$, Methylobacterium sp. SY-NiR1 is considered a pink-pigmented facultative methylotroph. SY-NiR1 had the ability to produce indole acetic acid which is one of phytohormones. This bacterium showed resistance against multiple heavy metals such as Cd, Cr, Cu, Pb, Ni, Zn, and the order of its resistance based on $EC_{50}$ was Zn > Ni > Cu > Pb > Cd > Cr. Therefore, Methylobacterium sp. SY-NiR1 can stimulate seed germination and plant growth in soil contaminated with heavy metals.

중금속으로 오염된 토양을 정화하기 위한 rhizoremediation 기법에서 식물이 중금속을 흡수하고 이동시키는 효율을 증가시키기 위하여 토양 미생물 특히, 근권세균의 역할이 중요하다. 이를 위하여 본 연구에서는 정유공장 주변의 유류 및 중금속으로 장기간 오염된 토양에서 서식하는 4가지 식물의 근권토양으로부터 Methylobacterium sp. SY-NiR1 균주를 분리하였다. 분리한 Methylobacterium sp. SY-NiR1는 분홍색 콜로니 형성, 막대모양 및 $\alpha-proteobacteria$에 속하는 특성으로 보아 pink-pigmented facultative methylotroph인 것으로 사료된다. 이 균주는 식물성호르몬인 indole acetic acid(IAA) 생산능을 가지고 있으며, 카드뮴, 크롬, 구리, 납, 니켈 그리고 아연 등과 같은 다양한 중금속에 대하여 내성을 가지고 있었으며, $EC_{50}$을 기준으로 한 SY-NiR1의 중금속에 대한 내성은 Zn > Ni > Cu > Pb > Cd > Cr 순이다. 따라서 본 연구에서 분리한 Methylobacterium sp. SY-NiR1 균주는 중금속으로 오염된 토양에서 식물의 발아, 생장 및 발달을 도와 식물의 중금속 흡수를 증가시켜 rhizorememdiation 효율을 증가시킬 수 있을 것으로 기대된다.

Keywords

References

  1. Abdoulaye, S., A. C. J. Timmers, C. Knief, and J. A. Vorholt. 2005. Methylotrophic metabolism is advantageous for methylobacterium extorquens during colonization of Medicago truncatula under competitive conditions. Appl. Environ. Microbiol. 71: 7245-7252 https://doi.org/10.1128/AEM.71.11.7245-7252.2005
  2. Araujo, W. L., J. Marcon, W. Jr. Maccheroni, J. D. van Elsas, J. W. L. van Vuurde, and J. L. Azevedo. 2002. Diversity of endophytic bacterial populations and their interaction with Xylella fastidiosa in citrus plants. Appl. Environ. Microbiol. 68: 4906-4919 https://doi.org/10.1128/AEM.68.10.4906-4914.2002
  3. Bar-Ness, E., Y. Hadar, Y. Chen, A. Shanzer, and J. Libman. 1992. Iron uptake by plants from microbial siderophores. Plant Physiol. 99: 1329-1335 https://doi.org/10.1104/pp.99.4.1329
  4. Basile, D. V., M. R. Basile, Q. -Y. Li, and W. A. Corpe. 1985. Vitamin $B_{12}$-stimulate growth and development of Jungermannia leiantha Grolle and Gymnocolea inflata (Huds.) Dum.(Hepaticae). Bryologist 88: 77-81 https://doi.org/10.2307/3242585
  5. Corpe, W. A. 1985. A method for detecting methylotrophic bacteria on solid surfaces. J. Microbiol. Ecol. 62: 243-250
  6. Corpe, W. A. and S. Rheem. 1989. Ecology of the methylotrophic bacteria on living leaf surfaces. FEMS Microbiol. Ecol. 62: 243-250 https://doi.org/10.1111/j.1574-6968.1989.tb03698.x
  7. Davies, P. J. 1995. The plant hormone concept: Concentration, sensitivity, and transport, pp. 13-18. In: P. J. Davies(ed.), Plant hormones: Physiology, biochemistry, and Molecular Biology. Kluwer Acedemic Publishers, Dordrecht, The Netherlands
  8. Diaz-Ranina, M. and E. Baath. 1996. Development of metal tolerance in soil bacterial communities exposed to experimentally increased metal levels. Appl. Environ. Microbiol. 62: 2970-2977
  9. Doronina, N. V., E. G. Ivanova, and Yu. A. Trotsenko. 2002. New evidence for the ability of methylobacteria and methanotrophs to synthesize auxins. Microbiology 71: 116-118 https://doi.org/10.1023/A:1017966820382
  10. Dworkin, M. and J. W. Foster. 1958. Experiments with some microorganism which utilize ethane and hydrogen. J. Bacteriol. 75: 592-603
  11. Fett, W. F., S. F. Osman, and M. F. Duun. 1987. Auxin production by plant-pathogenic Pseudomonas and Xanthomonas. Appl. Environ. Microbiol. 53: 1839-1845
  12. Foster, T. J. 1983. Plasmid-determined resistance to antimicrobial drugs and toxic metal ions in bacteria. Microbiol. Rev. 47: 361-409
  13. Gadd, G. M. 1992. Microbial control of pollution, pp. 59-88. Cambridge Press, Cambridge
  14. Green, P. N. 1992. The genus Methylobacterium, pp. 2342-2349. In: A. Balows, H. G Truper, M. Dworkin, W. Harder, and K. H. Schleifer( eds), The prokaryotes, second ed, Springer, Berlin, Germany
  15. Heggo, A. and J. S. Angel. 1990. Effects of vesiculararbuscular mycorrhizal fungi on heavy metal uptake by soybean. Soil Biol. Biochem. 22: 865-869 https://doi.org/10.1016/0038-0717(90)90169-Z
  16. Hiraishi, A., K. Furuchi, A. Matsumoto, K. A. Koike, M. Fukuyama, and K. Tabuchi. 1995. Phenotypic and genetic diversity of chlorine-resistant Methylobacterium strains isolated from various environments. Appl. Environ. Microbiol. 61: 2099-2107
  17. Holland, M. A. and J. C. Polacco. 1994. PPFMs and other covert contaminants: is there more to plant physiology than just plant. Plant Physiol. 45: 197-209
  18. Idris, R., R. Trifonova, M. Puschenreiter, W. W. Wenzel, and A. Sessitsch. 2004. Bacerial communities associated with flowering plants of the Ni hyperaccumulator Thlaspi goesingense. Appl. Environ. Microboil. 70: 2667-2677 https://doi.org/10.1128/AEM.70.5.2667-2677.2004
  19. Idris, R., M. Kuffuer, L. Bodrossy, M. Puschenreiter, S. Monchy, W. W. Wenzel, and A. Sessitsch. 2006. Characterization of Ni-tolerant methylobacteria associated with the hyperaccumulating plant Thlaspi goesingense and description of Methylobacterium goesingense sp. nov., Syst. Appl. Microbiol. 29: 634-644 https://doi.org/10.1016/j.syapm.2006.01.011
  20. Ietswaart, J. H., W. A. J. Griffoen, and W. H. O. Ernst. 1992. Use of nuclepore filters for counting bacteria by fluorescence microscopy. Appl. Envion. Microbiol. 33: 1225-1228
  21. Ivanova, E. G., N. V. Doronina, A. O. Shepeliakovskaia, A. G. Laman, F. A. Brovko, and Y. A. Trotsenko. 2000. Facultative and obligate aerobic methylobacteria synthesize cytokinins. Microbiology 67: 646-651
  22. Ivanova, E. G., N. V. Doronina, A. O. Shepeliakovskaia, A. G. Laman, F. A. Brovko, and Y. A. Trotsenko. 2001. Aerobic methylobacteria are capable of synthesizing auxins. Microbiology 70: 392-397 https://doi.org/10.1023/A:1010469708107
  23. Jaftha, J. B., B. W. Strijdom, and P. L. Steyn. 2002. Characterization of pigmented methylotrophic bacteria which nodulate Lotononis bainesii. Appl. Microbiol. 25: 440-449 https://doi.org/10.1078/0723-2020-00124
  24. Kim, T. J., E. Y. Lee, Y. J. Kim, K. S. Cho, and H. W. Ryu. 2003. Degradation of polyaromatic hydrocarbons by Burkholderia cepacia 2A-12. World J. Microbiol. Biotechnol. 19: 411-417 https://doi.org/10.1023/A:1023998719787
  25. Krishnamurti, G S. R., G. Cieslinski, P. M. Huang, and K. C. J. Van Rees. 1997. Kinetics of cadmium release from soils as influenced by organic acids: Implication in cadmium availability. J. Environ. Qual. 26: 271-277 https://doi.org/10.2134/jeq1997.00472425002600010038x
  26. Kumino, T., K. Seaki, K. Nagaoka, H. Oyaizu, and S. Matsumoto. 2001. Characterization of copper-resistant bacterial community in rhizosphere of highly copper-contaminated soil. Eur. J. Soil Biol. 37: 95-102 https://doi.org/10.1016/S1164-5563(01)01070-6
  27. Langley, S. and T. J. Beveridge. 1999. Effect of O-side-chain-lipopolysaccharide chemistry on metal binding. Appl. Environ. Microbiol. 65: 489-498
  28. Libbert, E., S. Wichner, U. Schiewer, H. Risch, and W. Kaiser. 1966. The influence of epiphytic bacteria on auxin metabolism. Planta 68: 327-334 https://doi.org/10.1007/BF00386332
  29. Lidstrom, M. E. and L. Christoserdova. 2002. Plants in the pink: cytokinin production by Methylobacterium. J. Bacteriol. 184: 1818 https://doi.org/10.1128/JB.184.7.1818.2002
  30. Lodewyckx, C., M. Mergeay, J. Vangronsfeld, H. Clijsters, and D. Van der Lelie. 2002. Isolation, characterization, and identification of bacteria associated with the zinc hyperaccumulator Thlaspi caerulescens subsp. Calaminaria. Int. J. Phytoreme. 4: 101-105 https://doi.org/10.1080/15226510208500076
  31. Madhaiyan, M., S. Poonguzhali, M. Senthilkumar, S. Seshadri, H. Y. Chung, and J. C. Yang. 2004. Growth promotion and inducution of systemic resistance in rice cultivar Co-47(Oryza sativa L.) by Methylobacterium spp. Botanical Bulletin of Academia Sinica 45: 315-324
  32. Madhaiyan, M., S. Poonguzhali, J. Ryu, and T. Sa. 2006. Regulation of ethylene levels in canola(Barassica compestris) by 1-aminocyclopropane-1-carboxylate deainase-containing Methylobacterium fujisawaense. Planta 224: 268-278 https://doi.org/10.1007/s00425-005-0211-y
  33. Mench, M. and E. Martin. 1991. Mobilization of cadmium and other metals from two soils by root exudates of Zea may. L., Nicotiana tabbacum L., and Nicotiana rustica L. Plant Soil 137: 187-196
  34. Nemecek-Marshall, M., R. C. MacDonald, J. J. Franzen, C. L. Wojciechowski, and R. Fall. 1995. Methanol and relation of methanol fluxes to stomatal conductance and leaf development. Plant Physiol. 108: 1359-1368 https://doi.org/10.1104/pp.108.4.1359
  35. Omer, Z. S., R. Tombolini, A. Broberg, and B. Gerhardson. 2004. Indole-3-acetic acid production by pink-pigmented facultative methylotrophic bacteria. Plant Growth Regul. 43: 93-96 https://doi.org/10.1023/B:GROW.0000038360.09079.ad
  36. Omer, Z. S., R. Tombolini, and B. Gerhardson. 2004. Plant colonization by pink-pigmented facultative methylotrophic bacteria(PPFMs). FEMS Microbiol. Ecol. 47: 319-326 https://doi.org/10.1016/S0168-6496(04)00003-0
  37. Rajkumar, M., R. Nagendran, K. J. Lee, W. H. Lee, and S. Z. Kim. 2005. Influence of plant growth promoting bacteria and $Cr^{6+}$ on the growth of Indian mustard. Chemosphere 62: 741-748
  38. Reber, H. H. 1992. Simultaneous estimates of the diversity and the degradative capability of heavy-metal-affected soil bacterial communities. Biol. Fertil. Soils 13: 181-186
  39. Roane, T. M. and S. T. Kellogg, 1996. Characterization of bacterial communities in metal-contaminated soils. Can. J. Microbiol. 42: 593-603 https://doi.org/10.1139/m96-080
  40. Roane, T. M. 1999. Lead resistance in two bacterial isolates from heavy metal-contaminated soils. Microb. Ecol 37: 218-224 https://doi.org/10.1007/s002489900145
  41. Robert, M. and J. Berthelin. 1994. Role of biological and biochemical factor in soil mineral weathering. In: P.M. Huang, M. Schnitzer(eds.), Interaction of soil minerals with natural organic and microbes. Soil Sci. Soc. Amer, Madison, WI
  42. Ryu, J., M. Madhaiyan, S. Poonguzhali, W. Yim, P. Indiragandhi, K. Kim, R. Anadham, J. Yun, and T. Sa. 2006. Plant growth substances produced by Methylobacterium spp. and their effect on tomato(Lycopersicon esculentum L.) and red pepper(Capsicum annum L.) growth. J. Microbiol. Biotechnol. 16: 1622-1628
  43. Sy, A., E. Giraud, P. Jourand, N. Garcia, A. Willems, P. de Lajudie, Y. Prin, M. Neyra, M. Gillis, C. Boivin-Masson, and B. Dreyfus. 2001. Methylotrophic Methylobacterium bacteria nodulate and fix nitrogen in symbiosis with legumes. J. Bacteriol. 183: 214-220 https://doi.org/10.1128/JB.183.1.214-220.2001
  44. Valls, M. and V. de Lorenzo. 2002. Exploiting the genetic and biochemical capacities of bacteria for the remediation of heavy metal pollution. FEMS Microbiol. Rev. 26: 327-338 https://doi.org/10.1111/j.1574-6976.2002.tb00618.x