Synthesis, Characterization, and Properties of Fully Aliphatic Polyimides and Their Derivatives for Microelectronics and Optoelectronics Applications

  • Mathews Anu Stella (Department of Polymer Science and Engineering, Pusan National University) ;
  • Kim Il (Department of Polymer Science and Engineering, Pusan National University) ;
  • Ha Chang-Sik (Department of Polymer Science and Engineering, Pusan National University)
  • Published : 2007.03.31

Abstract

Polyimides are one of the most important classes of polymers used in the microelectronics and photoelectronics industries. Because of their high thermal stability, chemical resistance, and good mechanical and electric properties, polyimides are often applied in photoresists, passivation and dielectric films, soft print circuit boards, and alignment films within displays. Recently, fully aliphatic and alicyclic polyimides have found applications as optoelectronics and inter layer dielectric materials, due to their good transparencies and low dielectric constants $(\varepsilon)$. The low molecular density, polarity and rare probability of forming inter- or intra-molecular charge transfers, resulting in lowering of the dielectric constant and high transparency, are the most striking characteristics of aliphatic polyimide. However, the ultimate end use of polyimides derived from aliphatic monomers is in their targeted applications that need less stringent thermal requirements. Much research effort has been exerted in the development of aliphatic polyimide with increased thermal and mechanical stabilities, while maintaining their transparencies and low dielectric constants, by the incorporation of rigid moieties. In this article, the recent research process in synthesizing fully aliphatic polyimides, with improved dimensional stability, high transparency and low $\delta$values, as well as the characterizations and future scope for their application in micro electric and photo-electronic industries, is reviewed.

Keywords

References

  1. K. L. Mittal, Ed., Polyimides: Synthesis, Characterization and Applications, Plenum, New York, 1984
  2. C. Feger, M. M. Khojasteh, and J. E. McGrath, Eds., Polyimides: Materials, Chemistry and Characterization, Elsevier, Amsterdam, 1989
  3. D. Wilson, H. D. Stenzenberger, and P. M. Hergenrother, Eds., Polyimides, Blackie, Glasgow, 1990
  4. M. K. Ghosh and K. L. Mittal, Eds., Polyimides Fundamentals and Applications, Marcel Decker, New York, 1996
  5. K. Faghihi and M. Hagibeygi, Macromol. Res., 13, 14 (2005)
  6. M. Ree, Macromol. Res., 14, 1 (2006) https://doi.org/10.1007/BF03219064
  7. Y. M. Jang, J. Y. Seo, K. H. Choe, and M. H. Yi, Macromol. Res., 14, 300 (2006) https://doi.org/10.1007/BF03219085
  8. K. C. Cho, S. H. Choi, and T. G. Park, Macromol. Res., 14, 348 (2006) https://doi.org/10.1007/BF03219093
  9. A. S. Argon and M. I. Bessonov, Polym. Eng. Sci., 17, 174 (1977)
  10. H. Ishida, S. T. Wellinghoff, E. Baer, and J. L. Koenig, Macromolecules, 13, 826 (1980)
  11. S. T. Wellinghoff, H. Ishida, J. L. Koenig, and E. Baer, Macromolecules, 13, 834 (1980)
  12. J. R. Havens, H. Ishida, and J. L. Koenig, Macromolecules, 14, 1327 (1981)
  13. X. D. Li, Z. X. Zhong, and G. Jin, Macromol. Res., 14, 257 (2006) https://doi.org/10.1007/BF03219080
  14. M. Ree, D. Y. Yoon, and W. Volksen, J. Polym. Sci.; Part B:Polym. Phys., 29, 1203 (1991)
  15. F. W. Harris and S. L.-C. Hsu, High Perform. Polym., 1, 3 (1989)
  16. H. Lim, W. J. Cho, C. S. Ha, S. Ando, Y. K. Kim, C. H. Park, and K. Lee, Adv. Mat., 14, 1275 (2002)
  17. C. S. Ha, Curr. Trends in Polym. Sci., 7, 85 (2002)
  18. M. A. Wahab, I. Kim, and C. S. Ha, Polymer, 44, 4705 (2003) https://doi.org/10.1016/S0032-3861(03)00699-2
  19. Y. Kim, H. B. Kwan, Y. J. Young, K. C. Dong, and C. S. Ha, Chem. Mater., 24, 5051 (2004)
  20. Y. Kim, M. Ree, T. Chang, C. S. Ha, T. L. Nunes, and J. S. Lin, J. Polym. Sci.; Part B: Polym. Phys., 33, 2075 (1995)
  21. M. I. Bessonov, M. M. Koton, V. V. Kudryavtsev, and L. A Laius, Polyimides Thermally Stable Polymers, Consultants Bureau, New York, 1987
  22. W. M. Edwards and I. M. Robinson, U.S. Patent 2,867,609 (1959)
  23. J. A. Kreuz, U.S. Patent 3,271,366 (1966)
  24. http://en.wikipedia.org/wiki/kapton
  25. S. Rojstaczer, M. Ree, D. Y. Yoon, and W. Volksen, J. Polym. Sci.; Part B: Polym. Phys., 30, 133 (1992)
  26. J. K. Gillham and H. C. Gillham, Polym. Eng. Sci., 13, 447 (1973)
  27. M. Kochi, S. Isoda, R. Yokota, and H. J. Kambe, Polym. Sci.; Part B: Polym. Phys., 24, 1619 (1986)
  28. E. Butta, S. De Petris, and M. Pasquini, J. Appl. Polym. Sci., 13, 1073 (1969)
  29. W. Wrasidlo, J. Macromol. Sci.-Phys., B3, 559 (1972)
  30. Y. Kim, W. H. Goh, T. Chang, C. S. Ha, and M. Ree, Adv. Eng. Mater., 6, 39 (2004)
  31. K. H. Choi, J. C. Jung, H. S. Kim, B. H. Sohn, W. C. Zin, and M. Ree, Polymer, 45, 1517 (2004)
  32. I. S. Chung, C. E. Park, M. Ree, and S. Y. Kim, Chem. Mater., 13, 2801 (2001) https://doi.org/10.1021/cm002007l
  33. S. I. Kim, T. J. Shin, M. Ree, G. T. Hwang, B. H. Kim, H. Han, and J. Seo, J. Polym. Sci.; Part A: Polym. Chem., 37, 2013 (1999)
  34. Y. Kim, E. Kang, Y. S. Kwon, W. J. Cho, C. Chang, M. Ree, T. Chang, and C. S. Ha, Synth. Metals, 85, 1399 (1997)
  35. Y. Kim, M. Ree, T. Chang, and C. S. Ha, Polym. Bull., 34, 175 (1995) https://doi.org/10.1007/BF00316393
  36. W. M. Robertson, G. Arjavalingam, G. Hougham, G. V. Kopcsay, D. Edelstein, M. Ree, and J. P. Chapple-Sokol, Electronics Lett., 28, 62 (1992)
  37. J. H. Shin, J. W. Park, W. K. Lee, N. J. Jo, W. J. Cho, and C. S. Ha, Synth. Metals, 137, 1017 (2003)
  38. Y. Kim, J. G. Lee, D. K. Choi, Y. Y. Jung, B. Park, J. H. Keum and C. S. Ha, Synth. Met., 91, 329 (1997) https://doi.org/10.1016/S0379-6779(97)03984-2
  39. H. O. Ha, W. J. Cho, and C. S. Ha, Mol. Cryst. Liq. Cryst., 349, 443 (2000)
  40. L. F. Thompson, C. G. Willson, and S. Tagawa Eds., Polymers for Microelectronics: Resists and Dielectrics (ACS. Symp. Ser. Vol. 537), Am. Chem. Soc., Washington, DC, 1994
  41. Y. Sakai, M. Ueda, A. Yahagi, and N. Tanno, Polymer, 43, 3497 (2002)
  42. C. S. Ha, H. D. Park, and C. W. Frank, Chem. Mater., 12, 839 (2000)
  43. K. R. Carter, R. A. DiPietro, M. I. Sanchez, and S. A. Swanson, Chem. Mater., 13, 213 (2001) https://doi.org/10.1021/cm002007l
  44. C. S. Ha, J. H. Shin, and H. T. Lim, Mater. Sci. Eng. B-Solid, 85, 195 (2001)
  45. S. J. Lee, C. S. Ha, and J. K. Lee, J. Appl. Polym. Sci., 82, 2365 (2001) https://doi.org/10.1002/app.1816
  46. A. Mochizuki, T. Fukuoka, M. Kanada, N. Kinjou, and T. Yamamoto, J. Photopolym. Sci. Technol., 15, 159 (2002)
  47. S. Morino, T. Yamashita, K. Horie, T. Wada, and H. Sasabe, React. Funct. Polymers, 44, 183 (2000)
  48. H. D. Park, K. Y. Ahn, M. A. Wahab, N. J. Jo, I. Kim, and C. S. Ha, Macromol. Res., 11, 172 (2004)
  49. S. W. Lee, S. I. Kim, B. Lee, W. Choi, B. Chae, S. B. Kim, and M. Ree, Macromolecules, 36, 6527 (2003)
  50. S. W. Lee, T. Chang, and M. Ree, Macromol. Rapid Commun., 22, 941 (2001) https://doi.org/10.1002/1521-3927(20010101)22:1<1::AID-MARC1>3.0.CO;2-T
  51. H. J. Park, J. W. Park, S. Y. Jeong, and C. S. Ha, IEEE Proceedings, 93, 1447 (2005)
  52. S. M. Pyo, S. I. Kim, T. J. Shin, M. Ree, K. H. Park, and J. S. Kang, Macromolecules, 31, 4777 (1998)
  53. http://www.pslc.ws/macrog/imide.htm
  54. P. Eliette, M. F. Barthe, J. D. Baerdemaeker, R. Mercier, S. Neyertz, N. D. Alberola, and C. Bas, J. Polym. Sci.; Part B: Polym. Phys., 41, 2998 (2003)
  55. H. Wang, T. Ugomori, K. Tanaka, H. Kita, K. I. Okamoto, and Y. Suma, J. Polym. Sci.; Part B: Polym. Phys., 38, 2954 (2004)
  56. F. W. Mercer and M. T. McKenzie, High Perform. Polym., 5, 97 (1993) https://doi.org/10.1088/0954-0083/5/2/002
  57. Q. Jin, T. Yamashita, and K. Horie, J. Polym. Sci.; Part A: Polym. Chem., 32, 503 (1994)
  58. T. Matsumoto, High Perform. Polym., 13, S85-S92 (2001) https://doi.org/10.1088/0954-0083/13/2/308
  59. H. Seino, T. Sasaki, A. Mochizuki, and M. Ueda, High Perform. Polym., 11, 255 (1999) https://doi.org/10.1088/0954-0083/11/3/301
  60. T. Matsuura, M. Ishizawa, Y. Hasuda, and S. Nishi, Macromolecules, 25, 3540 (1992)
  61. R. C. Fort and P. R. Jr., Schleyer, Chem Rev., 64, 277 (1964)
  62. Y. T. Chern and H. C. Shiue, Chem. Mater., 10, 210 (1998)
  63. J. J. Jensen, M. Grimsley, and L. J. Mathias, J. Polym. Sci.;Part A: Polym. Chem., 34, 397 (1996)
  64. Y. T. Chern and W. H. Chung, J. Polym. Sci.; Part A:Polym. Chem., 34, 117 (1996)
  65. Y. T. Chern, Y. T. Macromolecules, 31, 5837 (1998)
  66. Y. Watanabe, Y. Sakai, M. Ueda, Y. Oishi, and K. Mori, Chem. Lett., 29, 450 (2000)
  67. Y. Watanabe, Y. Shibasaki, S. Ando, and M. Ueda, J. Polym. Sci.; Part A: Polym. Chem., 42, 144 (2004)
  68. Y. Watanabe, Y. Sakai, Y. Shibasaki, S. Ando, and M. Ueda, Macromolecules, 35, 2277 (2002) https://doi.org/10.1021/ma011278u
  69. H. Seino, A. Mochizuki, and M. Ueda, J. Polym. Sci.; Part A: Polym. Chem., 37, 3584 (1999)
  70. A. S. Mathews, I. Kim, and C. S. Ha, J. Appl. Polym. Sci., 102, 3316 (2006)
  71. A. S. Mathews, I. Kim, and C. S. Ha, J. Polym. Sci.; Part A: Polym. Chem., 44, 5254 (2006)
  72. Y. Oishi, S. Onodera, J. Oravec, K. Mori, S. Ando, Y. Terui, and K. Maeda, J. Photopolym. Sci. Technol., 16, 263 (2003) https://doi.org/10.2494/photopolymer.16.3
  73. S. Ando, J. Photopolym. Sci. Technol., 17, 219 (2004)
  74. P. E. Hougham, P. E. Cassidy, K. Johns, and T. Davidson, Eds., Fluoropolymers 1: Synthesis and Flouropolymers 2: Properties, Plenum Publishers, New York, 1999
  75. S. Ando, T. Matsuura, and S. Sasaki, Macromolecules, 25, 5858 (1992)
  76. W. L. Zhou and F. C. Lu, Polymer, 35, 590 (1994)
  77. Y. S. Li, X. Q. Wang, M. X. Ding, and J. P. Xu, J. Appl. Polym. Sci., 61, 741 (1996)
  78. C. Joly, M. Smaihi, L. Porcar, and R. D. Noble, Chem. Mater., 11, 2331 (1999)
  79. B. P. Lin, Y. Pan, Y. Qian, and C. W. Yuan, J. Appl. Polym. Sci., 94, 2363 (2004)
  80. Y. Kawakami, S. P. Yu, and T. Abe, Polym. J., 24, 1129 (1992)
  81. C. M. Mahoney and J. A. Gargella, Jr., Macromolecules, 35, 5256 (2002) https://doi.org/10.1021/ma011278u
  82. H. Deligoz, T. Yalcýnyuva, and S. Ozgumus, Euro. Polym. J., 41, 771 (2005)
  83. Y. D. Moon and Y. M. Lee, J. Appl. Polym. Sci., 50, 1461 (1993)
  84. N. Furukawa, Y. Yamada, M. Furukawa, M. Yuasa, and Y. Kimura, J. Polym. Sci.; Part A: Polym. Chem., 35, 2239 (1997)
  85. M. Yamada, M. Kusama, T. Matsumoto, and T. Kurosaki, J. Org. Chem., 57, 6075 (1992)
  86. T. Ohno, M. Ozaki, A. Inagaki, T. Hirashima, and I. Nishiguchi, Tetrahedran Lett., 34, 2629 (1993)
  87. T. Matsumoto and T. Kurosaki, Macromolecules, 30, 993 (1997)
  88. T. Matsumoto, Y. Maeda, and N. Takeshima, J. Photopolym. Sci. Technol., 13, 327 (2000)
  89. H. Seino, O. Haba, A. Mochizuki, M. Yosioka, and M. Ueda, High Perform. Polym., 9, 333 (1997) https://doi.org/10.1088/0954-0083/9/3/011
  90. W. Volksen, H. J. Cha, M. I. Sanchez, and D. Y. Yoon, React. & Func. Polym., 30, 61 (1996)
  91. T. Kaneda, T. Katsura, K. Nakagawa, and H. Makino, J. Appl. Polym. Sci., 32, 3133 (1986)
  92. J. Y. Jeon and T. M. Tak, J. Appl. Polym. Sci., 61, 371 (1996)
  93. D. Wilson, H. D. Stenzenberger, and P. M. Her-genrother, Eds., Polyimides, Blockie & Son, London, 1990
  94. Y. J. Kim, T. E. Glass, G. D. Lyle, and J. E. McGrath, Macromolecules, 26, 1344 (1993)
  95. R. W. Lauver, J. Polym. Sci., 17, 2529 (1979)
  96. Y. Oishi, N. Kikuchi, S. Mori, S. Ando, and K. Maeda, J Photopolym. Sci. Technol., 15, 213 (2002)
  97. S. Andre, F. G. Pietrasanta, A. Rousseau, B. Boutevin, and G. Caporiccio, Macromol. Chem. Phys., 205, 2420 (2004)
  98. R. L. Flemming and R. W. Luth, Am. Mineral, 87, 25 (2002)
  99. C. Zhang, F. Babonneau, C. Bonhomme, R. M. Laine, C. L. Soles, H. A. Hristov, and A. F. Yee, J. Am. Chem. Soc., 120, 8380 (1998)
  100. Y. T. Chern, Macromolecules, 31, 1898 (1998)
  101. D. J. Liaw, B. Y. Liaw, P. N. Hsu, and C. Y. Hwang, Chem. Mater., 13, 1811 (2001) https://doi.org/10.1021/cm002007l
  102. C. Suryanarayana and M. G. Norton, in X-Ray Diffraction A Practical Approach, Plenum, New York, 1998, Chapter 3, pp.80-87
  103. N. Takahasi, D. Y. Yoon, and W. Parrish, Macromolecules, 17, 2583 (1984)
  104. S. Herminghaus, D. Boese, D. Y. Yoon, and B. A. Smith, Appl. Phys. Lett., 59, 1043 (1991) https://doi.org/10.1063/1.106324
  105. D. Boese, H. Lee, D. Y. Yoon, J. D. Swalen, and J. Rabolt, J. Polym. Sci. B, 30, 1321 (1992)
  106. W. Volksen, H. J. Cha, M, I. Sanchez, and D. Y. Yoon, React. Funct. Polym., 30, 61 (1996)
  107. T. Matsumoto, Macromolecules, 32, 4933 (1999)
  108. S. Kripotou, P. Pissis, V. A. Bershtein, P. Sysel, and R. Hobzova, Polymer, 44, 2781 (2003) https://doi.org/10.1016/S0032-3861(03)00699-2
  109. M. Kusama, T. Matsumoto, and T. Kurosaki, Macromolecules, 27, 1117 (1994)
  110. J. C. Huang, Z. K. Zhu, J. Yin, D. M. Zhang, and X. F. Qian, J. Appl. Polym. Sci., 79, 794 (2001) https://doi.org/10.1002/1097-4628(20010103)79:1<1::AID-APP10>3.0.CO;2-V
  111. A. Morikawa, Y. Iyoku, M. Kakimoto, and Y. Imai, Polym. J., 24, 107 (1992)
  112. J. J. Zarzycki, Sol-Gel Sci. Technol., 8, 17 (1997)