DOI QR코드

DOI QR Code

A Study on the CVD Deposition for SiC-TRISO Coated Fuel Material Fabrication

화학증착법을 이용한 삼중 코팅 핵연료 제조에 관한 연구

  • Kim, Jun-Gyu (Department of Ceramic Engineering, Yonsei University) ;
  • Kum, E-Sul (Department of Ceramic Engineering, Yonsei University) ;
  • Choi, Doo-Jin (Department of Ceramic Engineering, Yonsei University) ;
  • Kim, Sung-Soon (Department of Ceramic Engineering, Yonsei University) ;
  • Lee, Hong-Lim (Department of Ceramic Engineering, Yonsei University) ;
  • Lee, Young-Woo (Functional Materials, Korea Atomic Energy Research Institute) ;
  • Park, Ji-Yeon (Functional Materials, Korea Atomic Energy Research Institute)
  • 김준규 (연세대학교 신소재공학과) ;
  • 금이슬 (연세대학교 신소재공학과) ;
  • 최두진 (연세대학교 신소재공학과) ;
  • 김성순 (연세대학교 신소재공학과) ;
  • 이홍림 (연세대학교 신소재공학과) ;
  • 이영우 (한국원자력연구소 원자력수소생산사업팀) ;
  • 박지연 (한국원자력연구소 원자력수소생산사업팀)
  • Published : 2007.03.31

Abstract

TRISO coated fuel particle is one of the most important materials for hydrogen production using HTGR (high temperature gas cooled reactors). It is composed of three isotropic layers: inner pyrolytic carbon (IPyC), silicon carbide (SiC), outer pyrolytic carbon (OPyC) layers. In this study, TRISO coated fuel particle layers were deposited through CVD process in a horizontal hot wall deposition system. Also the computational simulations of input gas velocity, temperature profile and pressure in the reaction chamber were conducted with varying process variable (i.e temperature and input gas ratios). As deposition temperature increased, microstructure, chemical composition and growth behavior changed and deposition rate increased. The simulation showed that the change of reactant states affected growth rate at each position of the susceptor. The experimental results showed a close correlation with the simulation results.

Keywords

References

  1. H. Nickel, H. Nabielek, G. Pott, and A. W. Mehner, 'Long Time Experience with the Development of HTR Fuel Elements in Germany,' Nucl. Eng. Des., 217 141-51 (2002) https://doi.org/10.1016/S0029-5493(02)00128-0
  2. K. Minato and K. Fukuda, 'CHemical Vapor Deposition of Silicon Carbide for Coated Fuel Particles,' J. Nucl. Mater., 149 233-46 (1987) https://doi.org/10.1016/0022-3115(87)90482-X
  3. S. J. Xu, J. G. Zhou, and B. Z. Zhang, 'Effect of Deposition Temperature on the Properties of Pyrolytic SiC,' J. Nucl. Mater., 224 12-6 (1995) https://doi.org/10.1016/0022-3115(95)00039-9
  4. B. G. Kim, Y. Choi, J. W. Lee, Y. W. Lee, D. S. Sohn, and G. M. Kim, 'Multi-Layer Coating of Silicon Carbide and Pyrolytic Carbon on $UO_2$ Pellets by a Combustion Reaction,' J. Nucl. Mater., 281 163-70 (2000) https://doi.org/10.1016/S0022-3115(00)00365-2
  5. G. K. Miller, D. A. Petti, D. J. Varacalle Jr., and J. T. Maki, 'Statistical Approach and Benchmarking for Modeling of Multi-Dimensional Behavior in TRISO-Coated Fuel Particles,' J. Nucl. Mater., 317 69-82 (2003) https://doi.org/10.1016/S0022-3115(02)01702-6
  6. R. Moene, L. F. Kramer, J. Schoonman, M. Makkee, and J. A. Moulijn, 'Synthesis of High Surface Area Silicon Carbide Byfluidized Bed Chemical Vapour Deposition,' Appl. Catalysis A: General, 162 181-91 (1997) https://doi.org/10.1016/S0926-860X(97)00096-3
  7. S. Kouadri-Mostefa, P. Serp , M. Hemati, and B. Caussat, 'Silicon Chemical Vapor Deposition (CVD) on Microporous Powders in a Fluidized Bed,' Powder Technology, 120 82- 7 (2001) https://doi.org/10.1016/S0032-5910(01)00351-5
  8. Y. J. Lee and D. J. Choi, 'Comparison of Diluent Gas Effect on the Growth Behavior of Horizontal CVD SiC with Analytical and Experimental Data,' Surface & Coating Tech., 177-178 415-19 (2004) https://doi.org/10.1016/j.surfcoat.2003.09.018
  9. D. J. Kim and D. J. Choi, 'High-Temperature Corrosion Resistance of Chmically Vapor Deposited Silicon Carbide Against Hydrogen Chloride and Hydrogen Gaseous Environments,' J. Am. Ceram. Soc., 79 [2] 503-06 (1996) https://doi.org/10.1111/j.1151-2916.1996.tb08153.x
  10. D. J. Choi, J. G. Lee, J. S. Soo, Y. W. Kim, and D. J. Kim, 'Low Pressure Chmical Vapor Deposition of Silicon Carbide( in Korean),' J. Kor. Ceram. Soc., 31 [3] 257-64 (1994)
  11. Y. J. Lee, D. J. Choi, J. Y. Park, and G. W. Hong, 'The Effect of Diluent Gases on the Growth Behavior of CVD SiC Films with Temperature,' J. Mater. Sci., 35 4519-26 (2000) https://doi.org/10.1023/A:1004808418609
  12. J. H. Oh, B. J. Oh, and D. J. Choi, 'The Effect of Input Gas Ratio on the Growth Behavior of Chemical Vapor Deposited SiC Films,' J. Mater. Sci., 36 1695-700 (2001) https://doi.org/10.1023/A:1017508205412
  13. P. A. Taylor, M. Bozack, W. J. Choyke, and J. T. Yates, 'XRay Photoelectron Spectroscopy Study of Si-C Film Growth by Chemical Vapor Deposition of Ethylene on Si(100),' J. Appl. Phys., 65 [3] 1099-105 (1989) https://doi.org/10.1063/1.343045
  14. D. Briggs and M. P. Seah, 'Practical Surface Analysis,' vol. 1, John Wiley & Sons Ltd., 1990
  15. D. Lespiaux, F. Langlais, and R. Naslain, 'Chemisorption on $\beta$-SiC and Amorphous $SiO_2$ during CVD of Silicon Carbide from the Si-C-H-Cl System Correlations with the Nucleation Process,' J. Mater. Sci., 265 40-51 (1995) https://doi.org/10.1016/0040-6090(95)06562-8

Cited by

  1. Sintering and Characterization of SiC-matrix Composite Including TRISO Particles vol.51, pp.5, 2014, https://doi.org/10.4191/kcers.2014.51.5.418