Muscle Tissue Distribution Level after Dipping Administration of Streptomycin in Olive Flounder (Paralichthys olivaceus), Rockfish (Sebastes schlegeli), and Red sea bream (Pagrus major)

Streptomycin의 약욕에 따른 양식 어류(넙치, 조피볼락, 참돔)의 근육조직내 잔류량의 변화

  • Kim, Suk (Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University) ;
  • Chun, Myung-Sun (College of Veterinary Medicine, Seoul National University) ;
  • Chung, Hee-Sik (Hapcheon Country Office, Gyeongsangnam-do) ;
  • Jung, Won-Chul (Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University) ;
  • Kim, Dong-Hyeok (Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University) ;
  • Shon, Ho-Yeong (Agricultural Technology Center, Yangsan City Hall) ;
  • Min, Won-Gi (Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University) ;
  • Lee, Hu-Jang (Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University)
  • 김석 (경상대학교 수의과대학 동물의학연구소) ;
  • 천명선 (서울대학교 수의과대학) ;
  • 정희식 (경상남도 합천군청) ;
  • 정원철 (경상대학교 수의과대학 동물의학연구소) ;
  • 김동혁 (경상대학교 수의과대학 동물의학연구소) ;
  • 손호영 (경상남도 양산시 농업기술센터) ;
  • 민원기 (경상대학교 수의과대학 동물의학연구소) ;
  • 이후장 (경상대학교 수의과대학 동물의학연구소)
  • Published : 2007.03.30

Abstract

The residue depletion of streptomycin was investigated in the olive flounder (Paralichthys olivaceus), rockfish (Sebastes schlegeli), and red sea bream (Pagrus major) after consecutive three days treatment with dipping water at a dose of 20 g/ton water. Fishes were sampled for muscle on 1st, 2nd, 3rd, 4th, and 5th day after treatment. Streptomycin concentrations were determined by high performance liquid chromatography with tandem mass spectrometry. The recovery rates of streptomycin in muscle samples ranged from 87.2 to 102.3% and from 80.4 to 94.1% for the concentration of 0.05 mg/kg and 0.1 mg/kg, respectively. Streptomycin concentrations detected on the 1st day after treatment were 0.066, 0.058, and 0.073 mg/kg in muscles of olive flounder, rockfish, and red sea bream, respectively. At day 2, residue concentrations of all samples were believed to decrease to lower than 0.05 mg/kg, the detection limit. From results of the present study, a withdrawal period of streptomycin is proposed on 3 days after consecutive three days treatment with dipping administration at a dose of 20 g/ton water to avoid the presence of excessive residues of the edible muscles of olive flounder, rockfish, and red sea bream. The present study showed that residue concentrations of streptomycin decreased to below 0.05 mg/kg after treatment 2nd day.

Streptomycin을 물 1ton에 20 g을 녹여 넙치, 조피볼락 그리고 참돔을 3일 동안 약욕을 통해 투여한 다음, 휴약기간 동안 근육조직 내 잔류 분포를 조사하였다. 실험어는 해수 중에서 일정한 크기의 케이지에 일반 상업용 사료를 주어 사육하였고, 실험에 사용하기에 앞서 15일 동안 환경에 적응시켰다. 약제 투여 후, 근육시료는 1, 2, 3, 4, 그리고 5일에 각각의 실험어를 대상으로 채취하였다. Streptomycin의 잔류분석은 LC-MS/MS를 이용하여 분석하였다. Streptomycin의 회수율은, 0.05 mg/kg의 농도에서 87.2-102.3%, 0.1 mg/kg의 농도에서는 80.4-94.1%를 보였다. 투약 후 1일에는, 참돔의 근육 중 streptomycin의 잔류농도가 넙치와 조피볼락의 근육 중 잔류농도에 비하여 높았으나 통계적 유의성은 없었으며, 투약 후 2일에는, 모든 근육 시료에서 streptomycin이 검출되지 않았다. 이상의 결과로부터, streptomycin의 약욕을 통한 투여는 넙치, 조피볼락 그리고 참돔의 근육 중에서 안전휴약기간(5일)보다도 체내 소실이 빨리 일어나는 것으로 추정되는 바, 안전휴약기간을 준수한다면 streptomycin의 어류 근육 조직 내 잔류로부터 안전할 것으로 사료된다.

Keywords

References

  1. FAO fisheries department: State of world aquaculture 2006, FAO, Rome, pp. 5-16 (2006)
  2. 해양수산부: 해양수산 통계연보. 해양수산부, 서울, pp. 229- 341 (2005)
  3. 국립수의과학검역원: 식품 중 동물용의약품 잔류허용기준. 국립수의과학 검역원, 서울, pp. 3-10 (2005)
  4. 참여연대: 축消恥Í 동물약품(항생제) 실태 보고서, 참여연대, 서울, pp. 11-21 (2005)
  5. 국립수의과학검역원: 연도별(2001년-2004년) 항생제 판매실적. 수의과학 검역원, 서울, pp. 125-149 (2005)
  6. 이영순, 허강준, 박재학: 어류질병학. 신광종합출판, 서 울, pp. 331-335 (1996)
  7. Lambert, H.P. and O'Grady, F.W.: Antibiotic and chemotherapy. In: Veterinary medicine, 6th Ed. Churchill Livingstone, New York, pp. 130-139 (1992)
  8. Ferguson, J.P., Baxter, G.A. McEvoy, J.D.G., Stead, S., Rawlings, E. and Sharman, M.: Detection of streptomycin and dihydrostreptomycin residues in milk, honey and meat samples using an optical biosensor. Analyst, 170, 951-956 (2002)
  9. 유민호, 정준범, 김은희, 이형호, 정현도: 새로운 conjugation 방법을 응용 한 R plasmid 함유 어병세균의 분리와 양식장 내성균의 현황 분석, 한국수산학회지, 35, 115-121 (2002)
  10. 한국소비자보호원: 식품의 내성균 모니터링 결과. 한국소비 자보호원, 서 울, pp. 8-12 (2002)
  11. Ho, S.P., Hsu, T.Y., Che, M.H. and Wang, W.S.: Antibacterial effect of chloramphenicol, thiamphenicol and florfenicol against aquatic animal bacteria. J. Vet. Med. Sci, 62, 479-485 (2000) https://doi.org/10.1292/jvms.62.479
  12. Inglis, V., Soliman, M.K., Higuera, C.I. and Richards, R.H.: Amoxycillin in the control of furunculosis in Atlantic salmon parr. Vet. Rec, 130, 45-48 (1992) https://doi.org/10.1136/vr.130.3.45
  13. Giraud, E., Douet, D.G., Le Bris, H., Bouju-Albert, A., Donnay-Moreno, C., Thorin, C. and Pouliquen, H.G.: Survey of antibiotic resistance in an integrated marine aquaculture system under oxolinic acid treatment. FEMS Micribiol. Ecol, 55, 439-448 (2006) https://doi.org/10.1111/j.1574-6941.2005.00036.x
  14. Mirand, C.D. and Zemelman, R.: Antimicrobial multiresistance in bacteria isolated from freshwater Chilean salmon farms. Sci. Total Environ, 293, 207-218 (2002) https://doi.org/10.1016/S0048-9697(02)00022-0
  15. Ruiz, J., Capitano, L., Nunez, L., Castro, D., Sierra, J.M., Hatha, M., Borrego, J.J. and Vila, J.: Mechanisms of resistance to ampicillin, chloramphenicol and quinolones in multiresistant Salmonella typhimurium strains isolated. J. Antimicrob. Chemother, 43, 699-702 (1999) https://doi.org/10.1093/jac/43.5.699
  16. Rocca, G.D., Zaghinib, A., Zanonib, R., Sanguinettib, V., Zanchettac, S., Salvoa, A.D. and Malvisia, J.: Seabream (Sparus aurata L.): disposition of amoxicillin after single intravenous or oral administration and multiple dose depletion studies. Aquaculture, 232, 1 -10 (2004) https://doi.org/10.1016/S0044-8486(03)00452-6
  17. 정희식, 김석, 민원기, 이후장: Amoxicillin의 경구투여에 따 른 양식어류 (넙치, 조피볼락, 참돔)의 근육조직내 잔류량의 변화, 한국식품위생안전성 학회지, 21, 244-249 (2006)
  18. Kim, S., Chung, H.S., Ha, J.Y., Jung, W.C., Heo, S.H. and Lee, H.J.: Application of a solid-phase fluorescence immunoassay to determine oxytetracycline and tetracycline residues in tissue of olive flounder (Paralichthys olivaceus). J. Vet. Med. Sci, 68, 1243-1245 (2006) https://doi.org/10.1292/jvms.68.1243
  19. Bruijnsvoort, M., Ottink, S.J.M., Jonker, K.M. and Boer, E.: Determination of streptomycin and dihydrostreptomycin in milk and honey by liquid chromatography with tandem mass spectrometry. J. Chromatogr. A, 1058, 137-142 (2004) https://doi.org/10.1016/j.chroma.2004.07.101
  20. Edder, P., Cominoli, A. and Corvi, C.: Determination of streptomycin residues in food by solid-phase extraction and liquid chromatography with post-column derivatization and fluorometric detection. J. Chromatogr. A, 830, 345-351 (1999) https://doi.org/10.1016/S0021-9673(98)00917-0
  21. Javachandran, C. Singh, M.K., Singh, S.D. and Banerjee, N.C.: Pharmacokinetics of streptomycin with particular reference to its distribution on plasma, milk and uterine fluid of she-buffaloes. Vet. Res. Commun, 11, 353-358 (1987)
  22. Frankin, A., Horn, R.M., Obel, N, Ostensson, K. and Astrom, G.: Concentrations of penicillin, streptomycin and spiramycin in bovine udder tissue liquid. Am. J. Vet. Res, 17, 804-807 (1986)
  23. Stebbins, R.B., Graessle, O.E. and Robinson, H.J.: Studies on the absorption and exretion of streptomycin in animals. Proc. Soc. Exp. Biol. Med, 60, 88-72 (1945)
  24. Huber, W.G.: Streptomycin. In: Veterinary Pharmacology and Therapeutics, 3rd Ed. (Jones, L.M. ed), Iowa State College Press, Ames, pp. 519-530 (1966)