DOI QR코드

DOI QR Code

The Effects of Substrate, Metal-line, and Surface Material on the Performance of RFID Tag Antenna

  • Cho, Chi-Hyun (School of Electronic and Electrical Engineering, Hongik University) ;
  • Choo, Ho-Sung (School of Electronic and Electrical Engineering, Hongik University) ;
  • Park, Ik-Mo (Department of Electrical and Computer Engineering, Ajou University)
  • Published : 2007.03.31

Abstract

We investigated the effects of substrate, metal-line, and surface material on the performance of radio frequency identification(RFID) tag antenna using a tag antenna with a meander line radiator and T-matching network. The results showed that readability of the tag antenna with a thin high-loss substrate could be increased so that it was similar to that of a low-loss substrate if the substrate was very thin. The readability of the tag antenna decreased significantly when the metal line was thinner than the skin depth. The readability of the tag also decreased drastically when the tag was attached to high-permittivity high-loss target objects.

Keywords

References

  1. M. Hirvonen, P. Pursula, K. Jaakkola, and K. Laukkanen, 'Planar inverted-F antenna for radio frequency identification', Elect. Lett., vol. 40, pp. 848-850, Jul. 2004 https://doi.org/10.1049/el:20045156
  2. C. Cho, H. Choo, and I. Park, 'Broadband RFID tag antenna with quasi-isotropic radiation pattern', Elect. Lett., vol. 41, pp. 1091-1092, Sep. 2005 https://doi.org/10.1049/el:20052337
  3. H. Kwon, B. Lee, 'Compact slotted planar inverted- F RFID tag mountable on metallic objects', Elect. Lett., vol. 41, pp. 1308-1310, Nov. 2005 https://doi.org/10.1049/el:20052940
  4. K. V. S. Rao, P. V. Nikitin, and S. F. Lam, 'Antenna design for UHF RFID tags: A review and a practical application', IEEE Trans. Antennas Propagt., vol. 53, pp. 3870-3876, Dec. 2005 https://doi.org/10.1109/TAP.2005.859919
  5. K. Penttila, M. Keskilammi, L. Sydanheimo, and M. Kivikoski, 'Radar cross-section analysis for passive RFID systems', IEE Proc. Microw. Antennas Propagt., vol. 153, pp. 103-109, Feb. 2006
  6. C. A. Balanis, Antenna theory: analysis and design, New York: John Wiley & Sons, 1997
  7. http://www.alientechnology.com, 'RFID systems'
  8. N. Srinivas, K. Deb, 'Multiobjective optimization using nondominated sorting in genetic algorithm', J. Evol. Comput., vol. 2, pp. 221-248, 1995
  9. Y. Rahmat-samii, E. Michielssen, Electromagnetic Optimization by Genetic Algorithms, New York: John Wiley & Sons, 1999
  10. P. V. Nikitin, S. Lam, and K. V. S Rao, 'Low cost silver ink RFID tag antennas', in IEEE Antennas Propagat. Soc. Int. Symp., vol. 2B, pp. 353-356, Jul. 2005
  11. U. Karthaus, M. Fischer, 'Fully integrated passive UHF RFID transponder IC with 16.7 ${\mu}W$ minimum RF input power', IEEE J. Solid-State Circ., vol. 38, pp. 1602-1608, Oct. 2003 https://doi.org/10.1109/JSSC.2003.817249
  12. P. V. Nikitin, K. V. S. Rao, S. F. Lam, V. Pillai, R. Martinez, and H. Heinrich, 'Power reflection coefficient analysis for complex impedances in RFID tag design', IEEE Trans. Microw. Theory Tech., vol. 53, pp. 2721-2725, Sep. 2005 https://doi.org/10.1109/TMTT.2005.854191
  13. http://www.zeland.com/ie3d.html, Zeland Software, 'IE3D MoM-based EM simulator'
  14. C. Cho, H. Choo, and I. Park, 'Design of UHF small passive tag antennas', in IEEE Antennas Propagat. Soc. Int. Symp., vol. 2B, pp. 349-352, Jul. 2005

Cited by

  1. Charge Splitting In Situ Recorder (CSIR) for Real-Time Examination of Plasma Charging Effect in FinFET BEOL Processes vol.12, pp.1, 2017, https://doi.org/10.1186/s11671-017-2309-0
  2. Performance Analysis of UHF RFID Tags Dedicated to Power Supply Cords vol.63, pp.11, 2015, https://doi.org/10.1109/TAP.2015.2478148
  3. Eight hours of nocturnal 915 MHz radiofrequency identification (RFID) exposure reduces urinary levels of melatonin and its metabolite via pineal arylalkylamine N-acetyltransferase activity in male rats vol.91, pp.11, 2015, https://doi.org/10.3109/09553002.2015.1075075