Walsh Coded Training Signal Aided Time Domain Channel Estimation Scheme In MIMO-OFDM Systems

MIMO-OFDM 시스템에서 Walsh 부호화된 훈련 신호를 이용한 시간 영역 채널 추정 방식

  • 전형구 (동의대학교 정보통신공학과) ;
  • 장종욱 (동의대학교 컴퓨터공학과) ;
  • 송형규 (세종대학교 정보통신공학과)
  • Published : 2007.03.31

Abstract

In this paper, we propose a novel Walsh coded training signal design and Walsh decoding method to estimate the channel response in MIMO-OFDM systems. The Walsh coded training signals are designed to have orthogonal property in time domain. Using the orthogonal property, the Walsh decoding process makes it possible to separate the desired training signal from the received signal and to estimate the channel response. The computer simulation results show that the proposed method exhibits almost the same performance as Li's original method using the optimal training sequence, even though the proposed method has much lower complexity.

본 논문에서는 MIMO-OFDM 시스템에서 월쉬 부호화된 훈련신호를 이용하는 새로운 채널 추정 방식을 제안하였다. 월쉬 부호화된 훈련신호는 시간 영역에서 서로 직교하도록 설계된다. 이러한 직교성을 이용하여 월쉬 디코딩을 수행하면 시간 영역에서 원하는 훈련 신호를 분리할 수 있고 채널 추정이 가능하다. 컴퓨터 시뮬레이션 결과 제안된 방법은 계산량 감소에도 불구하고 최적 훈련 신호를 사용하는Li의 원래 방법[4]과 비교했을 때 거의 동일한 mean square error (MSE) 성능을 보였다.

Keywords

References

  1. Y. Sun, 'Bandwidth-efficient wireless OFDM,' {\em IEEE J. Selected Areas on Communications}, Vol. 19, No. 11, pp.2267-2278, Nov. 2001 https://doi.org/10.1109/49.963812
  2. IEEE 802.11a, 'Wireless LAN Medium Access Control(MAC) and Physical Layer (PHY) Specification : High-Speed Physical Layer Extension in the 5GHz Band,' IEEE Std 802.11a, 1999
  3. IEEE 802.16, 'Part 16: Air Interface for Fixed Broadband Wireless Access Systems - Medium Access Control(MAC) Modification and Additional Physical Layer (PHY) Specification for 2-11 GHz,' P802.16a/D7, Nov. 2002
  4. Y. (G.) Li, N. Seshadri, and S. Ariyavisitakul, 'Channel estimation for OFDM systems with transmitter diversity in mobile wireless channels,' IEEE J. Selected Areas on Communications, Vol. 17, pp. 461-471, March 1999 https://doi.org/10.1109/49.753731
  5. Y. (G.) Li, 'Simplified channel estimation for OFDM systems with transmit antenna,' IEEE Trans. on Commun., Vol. 1, pp. 67-75, January 2002 https://doi.org/10.1109/7693.975446
  6. E. G. Larsson and J. Li, 'Preamble design for multi-antenna OFDM-based WLANs with null subcarriers,' IEEE Signal Processing Letters, vol. 8, no. 11, pp. 285-288, Nov. 2001 https://doi.org/10.1109/97.969445
  7. I. Barhumi, G. Leus, and M.Moonen, 'Optimal training design for MIMO OFDM systems in mobile wireless channels,' IEEE Signal Processing, Vol. 51, No. 6, pp. 1615-1624, June 2003 https://doi.org/10.1109/TSP.2003.811243
  8. J. Guo, D. Wang, and C. Ran, 'Simple channel estimator for STBC-based OFDM systems,' Electronics Letters, Vol. 39, pp. 445-447 March 2003 https://doi.org/10.1049/el:20030284
  9. M. S. Baek, M. J. Kim, Y. H. You, H. K. Song, 'Semi-blind channel estimation and PAR reduction for MIMO-OFDM system with multiple antennas,' IEEE Transactions on Broadcasting, Vol. 50, pp. 414 - 424, Dec. 2004 https://doi.org/10.1109/TBC.2004.837885
  10. H. Harada and R. Prasad, Simulation and Software Radio for Mobile Communications, Artech House, 2002