DOI QR코드

DOI QR Code

The Effect of Surface Defects on the Cyclic Fatigue Fracture of HEROShaper Ni-Ti rotary files in a Dynamic Model: A Fractographic Analysis

Fractographic 분석을 통한 HEROShaper 니켈티타늄 전동 파일의 피로파절에 미치는 표면결함의 역할

  • Lee, Jung-Kyu (Department of Conservative Dentistry, Oral Science Research Center, Yonsei University) ;
  • Kim, Eui-Sung (Department of Conservative Dentistry, Oral Science Research Center, Yonsei University) ;
  • Kang, Myoung-Whai (Department of Conservative Dentistry, Dental Research Institute, Seoul National University) ;
  • Kum, Kee-Yeon (Department of Conservative Dentistry, Dental Research Institute, Seoul National University)
  • 이정규 (연세대학교 치과대학 보존학교실) ;
  • 김의성 (연세대학교 치과대학 보존학교실) ;
  • 강명희 (서울대학교 치의학 전문대학원 보존학교실) ;
  • 금기연 (서울대학교 치의학 전문대학원 보존학교실)
  • Published : 2007.03.31

Abstract

This in vitro study examined the effect of surface defects on cutting blades on the extent of the cyclic fatigue fracture of HEROShaper Ni-Ti rotary files using fractographic analysis of the fractured surfaces. A total of 45 HEROShaper (MicroMega) Ni-Ti rotary flies with a #30/.04 taper were divided into three groups of 15 each. Group 1 contained new HEROShapers without any surface defects. Group 2 contained HEROShapers with manufacturing defects such as metal rollover and machining marks. Croup 3 contained HEROShapers that had been clinically used for the canal preparation of 4-6 molars A fatigue-testing device was designed to allow cyclic tension and compressive stress on the tip of the instrument whilst maintaining similar conditions to those experienced in a clinic. The level of fatigue fracture time was measured using a computer connected the system. Statistical analysis was performed using a Tukey's test. Scanning electron microscopy (SEM) was used for fractographic analysis of the fractured surfaces. The fatigue fracture time between groups 1 and 2, and between groups 1 and 3 was significantly different (p<0.05) but there was no significant difference between groups 2 and 3 (p>0.05). A low magnification SEM views show brittle fracture as the main initial failure mode At higher magnification, the brittle fracture region showed clusters of fatigue striations and a large number of secondary cracks. These fractures typically led to a central region of catastrophic ductile failure. Qualitatively, the ductile fracture region was characterized by the formation of microvoids and dimpling. The fractured surfaces of the HEROShapers in groups 2 and 3 were always associated with pre-existing surface defects. Typically, the fractured surface in the brittle fracture region showed evidence of cleavage (transgranular) facets across the grains, as well as intergranular facets along the grain boundaries. These results show that surface defects on cutting blades of Ni-Ti rotary files might be the preferred sites for the origin of fatigue fracture under experimental conditions. Furthermore this work demonstrates the utility of fractography in evaluating the failure of Ni-Ti rotary flies.

본 연구의 목적은 니켈티타늄 전동파일의 피로파절에 있어서 표면 결함의 역할을 규명하고자 fatigue tester에서 반복적 인 fatigue force를 부여한 후 파절된 단면을 주사전자현미 경으로 관찰하여 파절 역학을 규명하는 것이다. 총 45개의 #30/.04 taper와 21 mm의 HEROShaper 니켈-티타늄 전동파일을 15개씩 3개의 군으로 분류하였다. 제 1군은 결함이 없는 새 HEROShaper파일, 제 2군은 제조과정에서 metal rollover나 machining marks와 같은 표면결함을 갖는 HEROShaper파일, 제 3군은 임상에서 4- 6개의 구치부 근관의 확대에 사용한 HEROShaper 파일을 사용하였다. 모든 파일들은 회전속도(300 rpm)와 pecking distance (3 mm)가 일정하게 맞춘 fatigue tester에서 파절될 때까지 시간을 측정한 후 통계분석을 통해 각 군간의 유의성을 분석하였고, 파절 단면의 farctographic analysis를 통해 파절역학을 규명하고자 하였다 실험결과 평균 파절시간에 있어서 group 1과 2, group 1과 3사이에는 통계학적으로 유의할 만한 차이가 있었으나 (p<0.05), group 2와 3사이에는 통계학적인 차이가 없었다. Fractographic analysis 결과 대부분의 파절면에서 microvoid와 dimple 소견을 갖는 ductile fracture양상이 관찰되었다. 또한 brittle fracture가 일어난 파절면에서는 파절선 전방에 수 많은 striation들이 관찰되었고 transgranular 및 intergranular cleavage 소견도 보였다. 표면결함이 있는 제 2, 3 군의 파절단면에서는 모든 시편에서 표면결함이 관찰되었다. 이와 같은 결과로 미루어 보아 표면결함이 반복 피로파절에서 미세균열의 기시점으로 중요한 역할을 하며 fractography분석법은 Ni-Ti 파일의 파절역학을 규명하는데 유용함을 알 수 있었다.

Keywords

References

  1. Esposito PT, Cunningham CJ. A comparison of canal preparation with nickel-titanium and stainless steel instruments. J Endod 21:173-176, 1995 https://doi.org/10.1016/S0099-2399(06)80560-1
  2. Peters OA. Current challenges and concepts in the preparation of root canal systems: a review. J Endod 30:559-567, 2004 https://doi.org/10.1097/01.DON.0000129039.59003.9D
  3. Kum KY, Spangberg LSW, Cha YB, Jung IY, Lee SJ, Lee CY. Shaping ability of three ProFile rotary instrumentation techniques in simulated resin root canals. J Endod 12:719-723, 2000
  4. Pruett JP. Clement DJ, Carnes DL. Cyclic fatigue testing of nickel-titanium endodontic instruments. J Endod 23:77-85, 1997 https://doi.org/10.1016/S0099-2399(97)80250-6
  5. Bahia MGA. Buono VTL. Decrease in the fatigue resistance of nickel-titanium rotary instruments after clinical use in curved root canals. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 100:249-255, 2005 https://doi.org/10.1016/j.tripleo.2004.10.013
  6. Bahia MGA. Martins RC, Gonzalez BM, Buono VTL. Physical and mechanical characterization and the influence of cyclic loading on the behavior of Ni-Ti wires employed in manufacture of rotary endodontic instruments. Int Endod J 38:795-801. 2005 https://doi.org/10.1111/j.1365-2591.2005.01016.x
  7. Bahia MGA. Melo MCC, Buono VTL. Influence of simulated clinical use on the torsional behavior of nickeltitanium rotary endodontic instruments. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 101: 675-680, 2006 https://doi.org/10.1016/j.tripleo.2005.04.019
  8. Ullmann CJ, Peters OA. Effect of cyclic fatigue on static fracture loads in ProTaper nickel-titanium rotary instruments. J Endod 31: 183-186, 2005 https://doi.org/10.1097/01.don.0000137641.87125.8f
  9. Schrader C, Peters OA. Analysis of torque and force with differently tapered rotary endodontic instruments in vitro. J Endod 31: 120-123, 2005 https://doi.org/10.1097/01.don.0000137634.20499.1d
  10. Haikel Y, Serfaty R. Bateman G, Senger B, Alleman C. Dynamic and cyclic fatigue of engine-driven rotary nickel-titanium endodontic instruments. J Endod 25: 434-440, 1999 https://doi.org/10.1016/S0099-2399(99)80274-X
  11. Tripi TR. Bonaccorso A. Condorelli GG. Cyclic fatigue of different nickel-titanium endodontic rotary instruments. Oral Surg Oral Med Oral Pathol Oral radiol Endod 102:e106-e114, 2006 https://doi.org/10.1016/j.tripleo.2005.12.012
  12. Peters OA. Barbakow F. Dynamic torque and apical forces of ProFile 04 rotary instruments during preparation of curved canals. Int Endod J 35:379-389, 2002 https://doi.org/10.1046/j.0143-2885.2001.00494.x
  13. Zelada G, Varela P, Martin B, Bahilo JG, Magan F, Ahn S. The effect of rotational speed and the curvature of root canals on the breakage of rotary endodontic instruments. J Endod 28:540-542, 2002 https://doi.org/10.1097/00004770-200207000-00014
  14. Xu X, Zheng Y, Eng D. Comparative study of torsional and bending properties for six models of nickel-titanium root canal instruments with different cross-sections. J Endod 32:372-375, 2006 https://doi.org/10.1016/j.joen.2005.08.012
  15. Li UM, Lee BS, Shih CT, Lan WH. Lin CP. Cyclic fatigue of endodontic nickel-titanium rotary instruments: Static and dynamic tests. J Endod 28:448-451, 2002 https://doi.org/10.1097/00004770-200206000-00007
  16. Shin YM, Kim ES, Kim KM, Kum KY. Effect of surface defects and cross-sectional configurations on the fatigue fracture of Ni-Ti rotary files in a dynamic model. J Kor Cons Dent 29:267-272, 2004 https://doi.org/10.5395/JKACD.2004.29.3.267
  17. Alapati SB, Brantley WA, Svec TA, Powers JM, Mitchell JC. Scanning electron microscope observations of new and used nickel-titanium rotary files. J Endod 29:667-669. 2003 https://doi.org/10.1097/00004770-200310000-00014
  18. Kuhn G. Tavernier B. Jordan L. Influence of structure on Ni-Ti endodontic instrument failure. J Endod 27:516-520. 2001 https://doi.org/10.1097/00004770-200108000-00005
  19. Eggert C. Peters O. Barbacow F. Wear of nickel-titaniurn Lightspeed instruments by scanning electron microscopy. J Endod 25:494-497, 1999 https://doi.org/10.1016/S0099-2399(99)80289-1
  20. Tripi TR, Bonaccorso A, Tripi V. Condorelli GG. Rapisardo E. Defects in GT rotary instruments after use. An SEM study. J Endod 12:782-785, 2001
  21. Cheung GSP, Peng B, Bian Z, Shen Y, Darwell BW. Defects in ProTaper S1 instruments after clinical use: fractographic examination. Int Endod J 38:802-809, 2005 https://doi.org/10.1111/j.1365-2591.2005.01020.x
  22. Yao JH. Schwartz SA, Beeson TJ. Cyclic fatigue of three types of rotary nickel-titanium files in a dynamic model. J Endod 32:55-65, 2006 https://doi.org/10.1016/j.joen.2005.10.013
  23. Hull D. Fractography: Observing, measuring and interpreting fracture surface topography, 1999. Cambridge. United Kingdom: Cambridge University Press
  24. Parrington RJ. Fractography of metals and plastics. Practical Failure Analysis 2: 16-46. 2002 https://doi.org/10.1361/152981502770351644
  25. Schneider SW. A comparison of canal preparations in straight and curved canals. Oral Surg 32: 271-275. 1971 https://doi.org/10.1016/0030-4220(71)90230-1
  26. Fife D, Gambarini G, Britto LR. Cyclic fatigue testing of ProTaper Ni-Ti rotary instruments after clinical use. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 97: 252-256, 2004
  27. Karn TA, Kelly FC, Eichmiller FC, Spnagberg LSW. Fracture behavior of Ni-Ti rotary endodontic instruments. J Dent Res #2684, 2004
  28. Spanaki-Voreadi AP, Kerezoudis NP, Zinelis S. Failure mechanism of ProTaper Ni-Ti rotary instruments during clinical use: fractographic analysis. Int Endod J 39:171-178, 2006 https://doi.org/10.1111/j.1365-2591.2006.01065.x
  29. Duerig T, Pelton A, Stockel D. An overview of nitinol medical applications. Mater Sci Eng A 273-275: 149-160, 1999 https://doi.org/10.1016/S0921-5093(99)00294-4
  30. Karn T. Fractographic and microstructual analysis of separated Ni-Ti rotary files. 2003. MS thesis, University of Connecticut
  31. Callister WD. Materials science and engineering. An introduction. New York: John Wiley & Sons, Inc. p.223-224, 2000
  32. Alapati SB, Brantley WA, Svec TA, Powers JM, Nusstein JM, Daehn GS. Proposed role of embedded dentin chips for the clinical failure of nickel-titanium rotary instruments. J Endod 30:339-341, 2004 https://doi.org/10.1097/00004770-200405000-00008

Cited by

  1. Comparative analysis of various corrosive environmental conditions for NiTi rotary files vol.33, pp.4, 2008, https://doi.org/10.5395/JKACD.2008.33.4.377
  2. Stress distribution for NiTi files of triangular based and rectangular based cross-sections using 3-dimensional finite element analysis vol.34, pp.1, 2009, https://doi.org/10.5395/JKACD.2009.34.1.001
  3. Effect of internal stress on cyclic fatigue failure in K3 vol.37, pp.2, 2012, https://doi.org/10.5395/rde.2012.37.2.74
  4. Effect of internal stress on cyclic fatigue failure in .06 taper ProFile vol.37, pp.2, 2012, https://doi.org/10.5395/rde.2012.37.2.79