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Reliability Analysis of Slope Stability
with Sampling Related Uncertainty
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Abstract

A reliability-based approach that can systematically model various sources of uncertainty is presented in the context
of slope stability. Expressions for characterization of soil properties are developed in order to incorporate sampling
errors, spatial variability and its effect of spatial averaging. Reliability analyses of slope stability with different
statistical representations of soil properties show that the incorporation of sampling error, spatial correlation, and
conditional simulation leads to significantly lower probability of failure than that obtained by using simple random

variable approach. The results strongly suggest that the spatial variability and sampling error have to be properly

incorporated in slope stability analysis.
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1. Introduction

The estimation of key soil properties and subsequent
quantitative assessment of the associated uncertainties has
always been an important issue in geotechnical engi-
neering. The most common reliability-based approach has
been to assume that soil properties could be modeled as
simple random variables (e.g., Christian et al. 1994;
Christian and Urzua 1998; Duncan 2000). This approach
implicitly assumes that a given soil property is perfectly

correlated with the seemingly homogeneous segment of

soil profile, and is the same at all locations within that
segment. It is, however, known that the assumption of
perfect correlation can lead to an overestimate of the
failure probability of a geotechnical structure, since it
usually overestimates the level of uncertainty. In general,
the stochastic nature of spatially varying soil properties
can be treated in the framework of a random field (e.g.
Vanmarcke, 1977a). Since in typical applications the whole
domain of interest is discretized into smaller elements,
the random field property has to be represented by a

suitable spatial average of each element. Over the
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last couple of decades various spatial averaging methods
have been proposed for slope stability analysis (Vanmarcke
1977a, 1977b; Li and White 1987a, 1987b; Li and Lumb
1987).

Kim (2003) reported the importance of geotechnical
variability in the analysis of earthquake-induced slope
deformations. This paper reports a follow-up analytical
study that investigated the influence of inherent variability
and sampling errors in the analysis of static slope stability.
Kim (2003) briefly described some of the findings from
that study and this paper reports all the remaining findings
in details. In this work, the author is particularly interested
in the development of the statistics of the local average
of the material property of a certain portion of the space,
since soils generally exhibit plastic behavior and the
stability of a soil slope tends to be controlled by the
averaged soil properties rather than the properties at a
particular location along the potential slip surface (i.e.,
Li and White 1987a, Tang et al. 1976, Vanmarcke 1977b).
In this regard the author extends the previous applications
of the spatial averaging method presented by Vanmarcke
(1977a, 1977b) and Li and White (1987a, 1987b) by
accounting for the sampling errors and the locations of
measurements. Both unconditional and conditional simulation
approaches are described and illustrated. Reliability-based
computational techniques are then used to obtain a
probability of slope failure. The results are compared with
the conventional random variable approach to illustrate
the influence of the various assumptions on the computed

probability of failure.

2. Statistical Spatial Averaged Soil Properties

A random field is defined as a family of random
variables at points with coordinates x = (x1, -~ , x,,) in an
n-dimensional parameter space (Vanmarcke 1983). If the
random field is Gaussian, then the random field v (x) can
be completely described by its mean function u(x),
variance function Oz(x), and the correlation o(x, x).
Non-Gaussian random fields, in general, need more
information beyond second moment statistics to completely

describe them. One special case is when the random fields
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are defined by the Nataf multivariate distribution (Liu and
Der Kiureghian 1986), which is adopted in this study
when modeling non-Gaussian random fields.

The spatial average o of a random soil property v(X)
of the certain element Q. (i.e., discretized zone of in-
terest) can be defined as the stochastic integral (Vanmarcke
1983). For the sake of simplicity the author will first

consider that the (sample) data are error free as:

1
7= . - . Q
) VLeu(x)dx sV de ; xeQ), a1
where Q. is an elementary volume, area or line in the
three-, two- and one-dimensional cases, respectively.
The first and second moment statistics (i.e., mean,
variance, and covariance) of spatial average v can then

be manipulated in terms of the statistics of point random

property v(x) as:
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where the random property can be described with trend
and random components such that p(x)= u(x)+&Xx).
Similarly, covariance of the spatial average o between

Q. and Q. is given as:

cov[p, 0" = E{b - E@)][0"-E@")]}

- ?1;7 .L L,“ (®)a(x')p(x,x") dxdx’ @

If the field is a weakly stationary field, 0’(x)0’(x") and
Ax, X)) can be replaced by o and p(r) respectively, where
ris a lag distance vector between the x and x’ such as
r=(x1-x", x2- %2, **, Xa -%). Then the variation and
covariance of the spatial average can further be simplified

as.

var[p]=07 - ¥(Q,) &)

1
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Where 7€) & ;gp( ) and r=x-x. Similarly,



cov[D,0']=0 - ¥(Q,,Q,") (6)
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In the above formulations, v(Q2) and 4(Q, Q.") may
be called the variance and covariance reduction factors,
respectively (Vanmarcke 1983). It should be noted that
the reduction factors are dependent only on the correlation
function (i.e., scale of fluctuation, etc.) and geometry of
the domain of interest and independent of the magnitude
of the point variance. The variance reduction factor is
bounded by O to 1 since the correlation coefficient is
always equal or less than unity. Therefore, the variability
of local average is always less than that of the point value
and further decreases as the size of the averaged domain
increases.

The first and second moment statistics of the spatial
averages can be obtained once the variance and covariance
reduction factors are determined. Detailed derivations of
statistics of the linear and areal averages for specific
geometries can be found in Vanmarcke (1977a, 1983) and
Li and White (1987a).

3. Conditional and Unconditional Approach

Uncertainty in the determination of soil properties
comes from various sources. One obvious source of
uncertainty is the inherent randomness of the natural
phenomena. Other sources of uncertainty include the
inaccuracies in the estimation of the.parameters and in
the choice of the distribution representing the randomness,
due to limited observational data. The following derivations
are based on a (weakly) homogeneous random field. The
author begins with the unconditional approach that does

not account for the location of measurements.

3.1 Unconditional Approach

Suppose that random soil properties »(x) have been
observed at N points (or areas) inside the homogeneous
zone of interest. Each measurement o s may be regarded

as a realization of random properties v (x) and statistics

of random properties p(x) can be estimated from the
measured values. Let us assume, for the moment, that the
observations are made at sufficiently large distance from
each other so that correlation between samples can be
neglected for practical purpose (statistically independent).
Unbiased sample moments may be used as point estimates
of the corresponding moments of population such as (e.g.,
Ang and Tang 1975):

.1 %/ *
pp=— T
VoY ™
*2
var[v] = o (8)

The above estimates, howevet, do not convey information
on the degree of accuracy of those estimates of parameters,
which depends mainly on the number of the observations.
The observational data »'; can be conceived to be
realizations of a set of independent sample random
variables V' ;i=1,2, N among the population and
then the sample mean £ can be regarded a random

variable, given as:

i

N
/_[ =
i=1 ©)

=~

Its mean value is given as:

N
Elf) = Y B = N = w0
i=1

and its variance is:

*2
1 O
var[i]=—= ) var{l; |=——
N2 N (11)

M=

Thus, the sample mean 42 has a mean value # (ie.,
unbiased estimator) and standard deviation (or error)
o/ JN.

Now, the first two moments of spatial average can be
estimated based on the observational data, accounting for
not only point estimates but also the degree of accuracy
of those estimations. Here we first define the spatial

average over the element domain (), in the same way as
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we did in the previous sections.

U:%L v(x)dx

1
=;Le[,u(x)+8(x)] d 3 V= L a3 xeQ, ()
For a homogeneous random field, #(x) =z and E[&X)e
x)] =0 Ar). The expected value of the spatial average

can be evaluated by replacing & with sample mean £ as:

1
E[D]=E|— i1+ &(x)) dx | = E[ i+ &(x)] =
] [ngew (x) ] la+e@l=pn o
Similarly, the variance of the spatial average is

estimated (see the Appendix for the derivation):

*
var[p] = O-T + 0'27(Qe)

(14)
Finally, the covariance between two spatial averages

is given (see the Appendix for the derivation):

*
cov[D,D'] ~ O-T+0'27(Qe,§2e')

(15)

The first term in the above two solutions (Equations
14 and 15) represents sampling errors (i.e., uncertainties
in the estimation of the sample mean) while the second
term is the reduced inherent variance due to the spatial
average. It should be noted that the equations explicitly
separate spatial correlation and sampling-related uncertainty.
In the special case of var(4) =0, which happens when
N— oo, the above two solutions (Equations 14 and 15)
become identical with Equations 5 and 6. Ang and Tang
(1984) and Tang (1984) reported a relationship that is
similar to Equation 14. Their proposed formula combines
various individual sources of uncertainties in determining
the c.o.v. (i.e., 6/ #) of the spatial average soil property.
Their formula, however, is based on the first order
approximation of various sources of uncertainties that are
factored (i.e., in a multiplicative form), and therefore may
not be applicable to a problem with sources of large
uncertainty. Li and White (1987a) also reported similar

relationships.
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Although the above formulation provides a simple and
yet systematic tool to quantify the absolute and relative
uncertainty in the determination of soil properties, in some
situations as described in the following section, more
general approach may be necessary to consider the

correlation between the measurements.

3.2 Conditional Approach |

An important and highly desirable characteristic of a
random field simulation is that the random field simulation
reproduces the observed values at their respective sampling
locations. Conditional simulation has this very desirable
property and it has been extensively used in many different
applications, particularly mineral exploration (see e.g.
Krige 1966; Matheron 1967; Journel 1989).

When a prior estimate of the mean value of a property
is not available, as is usually the case in most field
exploration problems, a linear estimator may be expressed
as a weighted linear combination of the observed values

in the form:

ZIV\.E ;
Og=0(Xg)= ) Wy
pad (16)

Requirements that the estimator be unbiased and the
expected value of its squared error be minimal yield the

following conditions for weights wy:

N

ZW@- =1

e (17
N
dw,o k-4 =0 a; k=12, ...,N
=i (18)

where A, is a Lagrange multiplier. The above two
equations are a system of N+l linear equations with N
unknowns w, and A, A measure of the error in the
estimation can be given in terms of the expected value
of the squared error at the minimum condition (sometimes

called “ordinary kriging variance”):

N
O-éK,a = E[(lja _Ua)z] = o.az _Zwafo-ja +ﬂ’a
= (19)



The second term in the right hand side of Equation
19 represents the reduction in the variance of the estimator
from the ensemble (or point) variance as a result of spatial
correlation. If all of the observation points and the point
to be estimated are separated far enough to be 0; = 0;
oy = 0 for i # j, the estimate may equal to the arithmetic
mean, and the ordinary Kriging variance may reduce to:

2 "2

- 2 o2 o
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from Equations 17 and 18.

Similarly, the covariance between two values 5, and

O» 18 given by:

N
ok = ElO, —V, YO, —v)]=0, - Z Wu Oy +4,
P

2

alternatively,

N
T ok a = El(O, 0, )0, —v)]=0,, - Zwbko-ka +4,
22)
Again when o, = 0;0; = 0 for i # j, the ordinary

kriging covariance reduces to:

*2
~ ~ o2 o
TOK.ab ¥ Cab +Ag 2oy (Qh,Qp)+ ¥ (23)

It should be noted that uncertainties arising from the
sampling errors are implicitly included in Equations 19
and 21, because the mean value needs to be estimated
based on observations. Also, Equations 20 and 23 are
identical to Equations 14 and 15 (based on the uncon-

ditional evaluation) as they should be.

4. Probability of Failure

Conceptually, the performance of a structure can be
described by a limit state function g(x) such that failure
is defined whenever the condition of g(x) < 0 is satisfied,
where x is the vector of model variables. The probability

of failure is then given by:

pr=PEx)<0)= [f(x)dx
(<0 (24

where f{x) is the joint probability density function (PDF)
of x.

During last four decades, a number of computational
methods have been developed to efficiently solve the
problem. These include the mean-value first order second
moment (MVFOSM or often simply FOSM) (Cornell
1969) and the first- and second-order reliability methods
(FORM and SORM) (Ang and Tang 1984; Madsen et al.
1986). A variety of other computation methods, including
simulation methods (Rubinstein 1981; Shinozuka 1983)
and response surface methods (Faravelli 1989) are also

available.

5. Example Analyses

The purpose of the example analyses is to illustrate the
influence of the various assumptions on the estimated soil

properties and the resulting probabilities of failure

5.1 Influence of Spatial Correlation and Averaging

The author is interested in evaluating the risk of failure
of a hyperthetic cohesive slope shown in Figure 1. Three
vertical borings are carried out and 10 soil samples are
taken at the specific locations shown in Figure 1.
Subsequent tests yield a sample mean /. =45 kN/m® and
a sample standard deviation s/(= 0)=13.5 kN/m® for
undrained shear strength, and fi, =18 kN/m’® and s,=0.9
kN/m® for soil density. For practical purpose, these values

can be considered as point statistics (e.g., Vanmarcke

. sample location 5 10m

Fig. 1. Geometry and Sample Location of a Circular Slip Slope
Surface
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1977a). Previous experience with local geology indicates
that the soil can be modeled as a homogeneous random
field, and scales of fluctuation are taken as & = 5m and
&= lm respectively. A separable 2-D exponential auto-
correlation function is employed to model the correlation
(i.e., Vanmarcke 1983; Li and White 1987a). It is known
that the computed statistics of the local average is
generally not sensitive to the type of autocorrelation
function (i.e., Vanmarcke 1977a).

For limit equilibrium analyses, the author is interested
in simulating the random soil properties that represent the
spatial averages of the vertical soil slices and thus we
need to compute the statistics of averaged soil properties
for each slice. Figures 2a and 2b show samples of
simulated shear strengths over the 40 slices of the slip
surface for both unconditional and conditional cases,
assuming a Gaussian distribution. Scales of fluctuation
used in those figures, however, are not & = Sm, & = 1lm
but & =25m, & =5m just for clear illustrative purpose.
The undrained strengths generated by the conditional
method (Figure 2b) show that the conditional mean (trend)

—— Sample mean
o4 0 - Mean + std. dev.

e~ Simulated propenies'.A
601 N

gth (kPa)
~

Slice number

(a) Unconditional Simulation (With Sampling Errors Considered)

80

—— Conditioned mean (trend)
4 - Mean + std. dev.

—a- Simulated properties

60 |
50
40 “
30 A

20 -

Average undralned strength (kPa)

10 T T T T T T —

Slice number
{b) Conditional Simulation
Fig. 2. Simulation of Average Undrained Shear Strengths
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is no longer stationary, but deviates from the sample mean
and is influenced by the measured values nearby. The
conditional standard deviation becomes smaller near the
measurement points and gradually increases with increasing
distance, ultimately reaching the value of the unconditional
standard deviation. Hence the conditional approach leads
to increasing variance reduction with increasing number
of measurements as would be expected.

The correlation between the average shear strengths
over the soil slices (Figure 3) shows that sampling error
increases the correlation between the random quantities.
It is interesting to observe that the conditional correlation
does not decrease monotonically with distance but it even
increases with increase of distance from the measurement
points. That is because the conditional correlation depends
not only on the lag distance between the random quantities
of interest, but also depends on the distance from the

sampling points to the point (or area) of interest.

1.0

ot riconditional {no sampling error}
- -a - Unconditional (sampling error)

—s— Conditiorial

Correlation coefficient

Slice number

Fig. 3. Correlation Between the Line Averages with Respect to
the Average of the First Slice

1.2
10 Sampling error (0 2/N), N=1
g A}
§084)
§ A
'§ 0.6 - \\,\ Line-average variance (~ 028/L) N=2
= L .
044 : 2 P
‘e Areal-average vatiance (~ 0 %(5/L))
N=5
0.2 >
N=20
0.0 . ; ; T
0 5 10 15 20 25

Ld

Fig. 4. Comparison of the Uncertainty Magnitudes Between the
Spatial Variation (Inherent Uncertainty) and Sampling error
(Statistical Uncertainty); NVis the Number of Tests, L is the
Scale of Averaging, and & is the Scale of Fluctuation (Kim,
2003)



Figure 4 shows the comparison of magnitude of
uncertainty between the spatial variation and sampling
error. Unlike the inherent uncertainty, errors from the
insufficient data and imperfect measurement do not
decrease by averaging over the area of space, but depend

on the number of samples,

5.2 Reliability Analysis of Slope Stability

The potential sliding mass was divided into 40 vertical
soil slices of equal width for stability analyses using the
Simplified Bishop method. Deterministic analyses of the
static slope stability, with the mean soil properties, yielded
a factor of safety 1.52. Analyses with more adverse soil
properties (# - 0 for the shear strengths and # + ¢ for soil
density) resulted in a factor of safety 1.02.

The limit-state function for the reliability analyses was

defined as:
g(x) = FS(x) -1

which defined the slope to be safe for factor of safety
FS(+) greater than one. The reliability computations were
carried out with the aid of CALREL, a general-purpose
structural reliability analysis program developed by Liu
et al. (1989), linked to user-defined subroutine programs
for static slope stability analyses including STAGLEM
and GLEM developed by Kim (2001). The undrained
strength of soil was modeled with both normal and
lognormal distributions in order to examine the influence
of uncertainty of distribution forms on the risk level of
the problem. The soil properties were modeled using the
same parameters as used in the previously discussed
statistical analyses.

The computed distributions (densities) of the factors of
safety are shown in Figure 5. The mean is essentially the
same for all the cases but the shape of the distribution
for the case of the sampling error added (both conditional
and unconditional cases) is more dispersed due to the
added uncertainty and, consequently, resulted in a higher
probability of failure. It should be noted that the area
underneath the density function with the factor of safety
FS less than one is the probability of failure. Reflecting

the variance reduction from the spatial averaging, the
density of the unconditional approach (without sampling
error) is relatively narrower than that of the conventional
random value approach. In this particular example problem,
the differences between the unconditional and conditional
cases are relatively small because the additional variance
reduction by conditioning is small due to the relatively
small scale of fluctuation (& =5m and &,= Im).

The results in Table 1 also show that the risk of failure
is sensitive to the choice of the distribution model of
random soil properties (i.e., an order of magnitude
difference in Py). In this particular case, the analyses with
soil properties assumed to have normal distributions
consistently yield higher probability of failure than with
lognormal distributions. That may be mainly because the
normal distribution has more density (or weight) in
smaller values than the lognormal distribution with the
same mean and standard deviation, since the lognormal
is non-negative. Thus, if the distribution form is uncertain,
it may be worth examining distributions other than normal
distribution.

The scale of fluctuation has significant effect on the
reliability of the slope stability, especially for the uncon-
ditional approach without sampling errors (Figure 6). As

expected, risk of failure significantly increases with increase

—&— Conitional approach

», —e— Unconditionai approach (sampting aerror}

44 \ - - - Unconditional approach (no sampling errar)
—— Random variable approach (no sampling error)

—e— Random variable appraach (sampiing error}

f(FS),Probability density .

Fig. 5. Probability Distributions of Factors of Safety (6,= 5m and
§,=1m) with Soil Properties Normally Distributed

Table 1. Probabilities of failure (#) for three different approaches
with normal and lognormal distributions

Source of uncertainty Normal Lognormal
Spatial variation only 2.1x107° 1.2x107"
Sampling error added 1.4x107° 2.2x107"
Conditional approach 4.2x107 6.1%107°
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Fig. 6. Effects of the Scale of Fluctuation on the Failure Probability
of the Slope

of the scale of fluctuation, since the variance reduction
decreases. Uncertainty arising from sampling errors sub-
stantially contributes to the risk of failure, thus illustrating
the importance of the sampling errors in the assessment
of slope stability problem. In contrast, the results of the
unconditional approach with sampling errors and conditional
approach are relatively insensitive to the scale of fluctuation.
That is partly due to the fact that with the increasing scale
of fluctuation the increase in variance reduction by
conditioning is offset by a decrease in the variance
reduction as a result of spatial averaging. The fact that
these approaches are less sensitive to the scale of fluc-
tuation can be potentially important implication, since
accurate determination of the scale of fluctuation has been
problematic and requires an additional effort beyond that
needed to obtain the mean and standard deviation. This
example also shows that significant variance reduction can
be achieved by spatial averaging, and illustrates the
importance of spatial correlation with the soil property
determination. The results suggest that if the size of the
averaging domain is sufficiently large, the variance associated
with inherent uncertainty may be practically neglected,
thus allowing us to focus on the statistical uncertainty and

measurement errors

6. Conclusions

The results of analyses confirm that the variability of
the local average is always less than that of the point
value and that it decreases with increase of the size of

the averaging domain. Another important outcome of the
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stochastic treatment is that the variability of the local
average always decreases as the dimension of a domain
increases. The variance reduction due to averaging of an
area or a volume can be more significant than line
averaging. Thus, the uncertainty of the area or volume-
averaged soil properties is consequently often far less than
that of the point properties.

Unlike the inherent uncertainty, sampling-related uncer-
tainty does not decrease by averaging of the area or space,
but depends on only the number of samples.

The resuits suggest that if the size of the averaging
domain is sufficiently large, relative to the scale of fluc-
tuation, the variance associated with inherent uncertainty may
be practically neglected, thus allowing us to focus on the
sampling-related uncertainty such as the statistical uncertainty.

The conditional approach, while computationally more
intensive, offers the advantage of honoring the data at the
respective sampling points and it is particularly well suited
in situations with large numbers of samples in a highly
correlated random field.

Estimates of probability of failure obtained from reli-
ability analyses show that the conditional approach, which
accounts for the inherent spatial variability of the soil
deposit and sampling errors, leads to significantly lower
estimates of the probability of failure than that obtained
by using simple random variable (perfectly correlated soil)
approach. The proposed unconditional approach that
accounts for sampling-related uncertainty also results in
a good approximation to the results of more general
conditional approach.

Finally, the analyses strongly suggest that the spatial
variability and sampling error have to be properly in-

corporated in slope stability analysis.
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Appendix

The following derivations may help the reader understand

the developed equations.

var[ 4] = Var{ ZV}

Niz1
2{ 2 var(V; )}
N i=1
*2
_o Equation (11)
N

var[D] = E[@ - p)*] {[ jQ (- ) dx+ L g e(x)dxﬂ
= b b

_1 . 1 2 .

- L} L) var(f1) dxdx +V—2L2e jgea P(r) dxdx
2

AN

A

1 o
=) b, b, PlGa—m@-p) dxdx E[£(x)&(x)] dxdx’

Equation (14)
cov[r,5"] = E(@ - p)('-)]
1 N N
. E{; o, G my dcs - [ o) dx}[i, o G=a dxeo [ o0x) dx}}
1 N
“7r by by, B = =) *W bk, #

:#L)Lz var( 1) dxdx'+*-£,2 L} &2 p(r) dxdx’
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c
:T+027(9e,9e')

Equation (15)
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