DOI QR코드

DOI QR Code

Comparative Study between Design Methods and Pile Load Tests for Bearing Capacity of Driven PHC Piles in the Nakdong River Delta

낙동강 삼각주에 항타된 PHC말뚝의 지지력을 위한 재하시험과 지지력 공식의 비교연구

  • Dung, N.T. (Dong-A Univ., School of Civil Engrg.) ;
  • Chung, S.G. (Dong-A Univ., School of Civil Engrg.) ;
  • Kim, S.R. (Dong-A Univ., School of Civil Engrg.) ;
  • Chung, J.G. (Pusan Information Technology College, Dept. of Civil Engrg.)
  • Published : 2007.03.31

Abstract

Deep foundations have been popularly installed in hard stratum such as gravels or rocks in Korea. However, it is necessary to consider sand or sandy gravel layers that locate at the mid-depths as the bearing stratum of piles in the thick Nakdong River deltaic deposits, as done in the Chaophraya (Bangkok) and Mississippi River deltas. This study was focused on the finding of suitable methods for estimating bearing capacity when driving prestressed high-strength concrete (PHC) piles to a required depth in the deltaic area. Ground investigation was performed at five locations of two sites in the deltaic area. Bearing capacity of the driven piles has been computed using a number of proposed methods such as CPT-based and other analytical methods, based on the ground investigation and comparison one another other. Five PDA (pile driving analyzer) tests were systematically carried out at the whole depths of embedded piles, which is a well-blown useful technique for the purposes. As the results, the bearing capacities calculated by various methods were compared with the PDA and static load testing results. It was found that the shaft resistance is significantly governed by set-up effects and then the long-term value agrees well with that of the $\beta$ method. Also, the design methods for toe resistance were determined based on the SLT result, rather than PDA results that led to underestimation. Moreover, using the CPT results, appropriate methods were proposed for calculating the bearing capacity of the piles in the area.

우리나라에서는 암반 및 자갈층과 같은 단단한 층 내에 깊은 기초를 매입하는 것이 일반적이다. 그러나 Chaophraya(Bangkok)와 Mississippi강 삼각주에서 실시되고 있는 것과 같이, 대심도 낙동강 삼각주 퇴적토에서도 말뚝의 지지층으로써 중간 깊이에 위치하는 모래 및 모래질 자갈층을 고려할 필요가 있다. 이 연구는 이 지역에서 PHC 말뚝을 요구하는 깊이까지 항타할 때, 말뚝의 지지력을 위한 적절한 평가법을 찾고자 하였다. 지반조사는 두 현장의 5개소에서 실시되었다. 말뚝의 지지력은 지반조사 결과를 이용하고 CPT에 근거한 평가법과 여러 다른 해석법을 적용하여 계산되었으며, 상호 비교가 이루어 졌다. 항타된 5개의 말뚝에 대해 매입된 전 깊이에 걸쳐 잘 알려진 PDA시험이 체계적으로 수행되었다. 여러 평가법에 의하여 계산된 지지력은 PDA 및 정재하 시험결과와 함께 비교되었다. 그 결과, 주면마찰력은 set-up 효과에 따라 지배적으로 영향을 받으며, 장시간 경과 후에는 $\beta$법에 의한 결과와 좋은 일치를 보였다. 선단 지지력은 과소평가되는 PDA시험 보다는 정재하시험결과에 근거하여 적절한 평가법을 선정하였다. 최종적으로, CPT결과를 이용하여 이 지역에 적합한 지지력의 평가법을 도출하였다.

Keywords

References

  1. Architectural Institute of Japan (AIJ) (2001), 'Recommendations for design of building foundation', 483p
  2. Aoki, N. and de Alencar, D. (1975), 'An approximate method to estimate the bearing capacity of piles', Proceeding, the 5th PanAmerican Conference of Soil Mechanics and Foundation Engineering, Buenos Aires, YoU, pp.367-376
  3. Aas G., Lacasse, S., Lunne, T. and Hoeg, K. (1986), 'Use of in situ tests for foundation design on clay', Use of In Situ Tests in Geotechnical Engineering, ASCE, GSP No.6, pp.1-30
  4. Blessey, W. E. (1976), 'Pile foundation in the Mississippi River deltaic plain', Analysis and Design of Building Foundations, Edited by H.Y. Fang, Envo Publishing Co: pp.799-834
  5. Bustamante, M. and Gianeselli, L. (1982), 'Pile bearing capacity predictions by means of static penetrometer CPT', Proceeding of the 2nd European Symposium on Penetration Testing, ESOPT-2, Amsterdam, Vol.2, pp.493-500
  6. Burland, J. (1973), 'Shaft friction of piles in clay-A simple fundamental approach', Ground Engineering, Vol.6, No.3, pp.30-42
  7. Chung, S. G., Giao, P. H., Kim, G. J. and Leroueil, S. (2002), 'Geotechnical properties of Pusan clays', Canadian Geotechnical Journal, Vol.39, No.5, pp.1050-1060 https://doi.org/10.1139/t02-055
  8. Chung, S. G., Kim, S. K., Kang, Y. J., Im, J. C. and Prasad, K. N. (2006), 'Failure of a breakwater founded on a thick normally consolidated clay', Geotechnique, Vol.56 No.6, pp.393-409 https://doi.org/10.1680/geot.2006.56.6.393
  9. DeRuiter, J. and Beringen, F. I. (1979), 'Pile foundation for large North sea structures', Marine Geotechnology, Vol.3, No.3, pp.267-314 https://doi.org/10.1080/10641197909379805
  10. Eslami, A. and Fellenius, B. H. (1997), 'Pile capacity by direct CPT and CPTU method applied to 102 Case Histories', Canadian Geotechnical Journal, Vol.34, No.6, pp.880-898
  11. Fellenius, B. H. (1991), 'Chapter 13: Pile foundation', Foundation Engineering Handbook. 2nd edition. H.S. Fang, editor, New York, pp.511-536
  12. Fellenius, B. H. (2002), 'Determining the true distributions of load on instrumented pile', Geotechnical Special Publication No. 116, ASCE, Vol.2, pp.1455-1470
  13. Fellenius, B. H. (2006a), 'Chapter 7-8-9: Basic of Foundation design', E-book, 2nd edition
  14. Fellenius, B.H. (2006b), 'Results from long-term measurement in piles of drag load and downdrag', Canadian Geotechnical Journal, Vol.43 No.4, pp.409-430 https://doi.org/10.1139/t06-009
  15. Janbu, N. (1976), 'Static bearing capacity of friction piles', Proceeding of the rfh European Conference on Soil Mechanics and Foundation Engineering, YoU, pp.479-482
  16. Jardine et al. (2005), 'ICP design method for driven piles in sands and clays', Thomas Telford Publishing, London, 105p
  17. Kim, S. R., Chung, S. G. and Dzung, N. T. (2006), 'Determination of true resistance from load transfer test performed on a PHC pile', Journal of the Korean Geotechnical Society, Vol.22, No.l l , pp. 113-122, (in Korean)
  18. Kulhawy et al. (1983), 'Transmission line structure foundation for uplift-compression loading', Report No.EL-2870, Electric Power Research Institute, Palo Alto, CA
  19. Meyerhof, G. G. (1976), 'Bearing capacity and settlement of pile foundations', Journal of Geotechnical Engineering, The Eleventh Terzaghi Lecture, ASCE, Vol.102, GT3, pp.195-228
  20. Meyerhof, G. G. (1983), 'Scale effects of pile capacity', Journal of Geotechnical Engineering, ASCE, Vol.108, GT3, pp.195-228
  21. Murad, Y. A-F. and Hani, H. T. (2004), 'Assessment of direct cone penetration test methods for predicting the ultimate capacity of friction driven piles', Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol.130, No.9, pp.935-944 https://doi.org/10.1061/(ASCE)1090-0241(2004)130:9(935)
  22. Prince, G. and Wardle, I. F. (1982), 'A comparison between cone penetration test results and the performance of small diameter instrumented piles in stiff clay', Proceeding of the r' European Symposium on Penetration testing, Amsterdam, Vol.2, pp.775-780
  23. Philipponnat, G. (1980), 'Methode pratique de calcul d'un pieu isole a l'aide du penetrometre statiqe', Revue Francaise de Geotechnique, pp.55-64
  24. Phien-wej, N., Giao, P. H. and Nutalaya, P. (2006), 'Land subsidence in Bangkok, Thailand', Engineering Geology, Vol.82, No.4, pp.187-201 https://doi.org/10.1016/j.enggeo.2005.10.004
  25. Robertson et al. (1986), 'Use of piezometer data', Proceeding of the ASCE Specialty Conference In Situ '86: Use of In Situ Tests in Geotechnical Engineering, Blacksburg, pp.1263-1280
  26. Robertson, P. K. and Campanella, R. G. (1983), 'Interpretation of cone penetration tests, Part I: Sand'. Canadian Geotechnical Journal, Vol.20, No.4, pp.718-733 https://doi.org/10.1139/t83-078
  27. Schmertmann, J. H. (1978), 'Guidelines for Contest, Performance, and Design', Federal Highway Administration, Report FHW A- TS78209, Washington, 145p
  28. Tumay, M. T. and Fakhroo, M. (1981), 'Pile capacity in soft clays using electric QCPT data', ASCE, Cone Penetration Testing and Experience, St. Louis, pp.434-455
  29. Vesic, A. S. (1977), 'Design of pile foundation', Synthesis of Highway, No. 42, National Cooperative Highway Research Program Transportation Research Board, National Research Council, Washington