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Elastic-plastic Micromechanics Modeling of Cross-anisotropic
Granular Soils: II. Micromechanics Analysis
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Abstract

In the companion paper, we provided the novel elastic-plastic constitutive model based on the micromechanics
theory. Herein, the elastic and elastic-plastic deformation of granular soils is meticulously analyzed. To guarantee
high accuracy of the microscopic parameter, the systematic procedure to evaluate the parameters is provided. The
analysis of the elastic response during the isotropic and triaxial compression shows that the stress-level dependency
of cross-anisotropic elastic moduli is induced by the power relationship of the contact force in the normal contact
stiffness, while the evolution of fabric anisotropy is more pronounced during triaxial compression. The micromechanical
analysis indicates that the plastic strains are likely to occur at very small strains. The plastic deformation of tangential

contacts has an important role in the reduction of soil stiffness during axial loading.
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1. Introduction stress-strain behavior of granular soils has been understood
within the notion of the elasticity as well as the elastic-

It is not questionable whether the behavior of the plastic theory of the solid, which inevitably ignores the
granular soil is the essential topic in the geotechnical area particulate feature of soils. Even though the existing
that a geotechnical professional should understand. The framework of the finite element method, which is
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commonly employed in the geotechnical designs, is not
likely to be abandoned without the presence of an ultimate
theory to compensate for every single defect in the finite
element method and its continuum-based constitutive
model, it is quite necessary to expand our knowledge on
the fundamental mechanisms of soil behavior, especially
in the microscopic level of soil deformation.

The nonlinearity and anisotropy of the stress-strain
responses in the granular soils are key features one needs
to address to elevate the accuracy of the prediction in
the geotechnical problems. Recalling the particulate nature
of granular soils, one can suspect that both the nonlinearity
and the anisotropy of soil deformation originate from the
microscopic nonlinear anisotropic responses. In the com-
panion paper, we derived the micromechanics-based
elastic-plastic constitutive model, which includes a number
of microscopic features the particles can possess. It was
theoretically examined that the contacts in the particle
assembly are nonlinearly deformed regardless of the elastic
or elastic-plastic contacts.

In this paper, it will be shown that the macroscopic
nonlinearity in the stress-strain responses relates to various
microscopic features such as the nonlinear elastic and
elastic-plastic contact stiffnesses. The elastic and plastic
strains are decomposed into the strains induced by the
normal and tangential contact deformations as well as the
elastic and elastic-plastic contact deformation. The contri-
butions of microscopic mechanisms are quantitatively
examined, from which authors are to provide the theore-
tical basis to extend the understanding of the nonlinear

cross-anisotropic deformation of the granular soils.

2. Summary of Micromechanics Formulations

The detailed derivation of the micromechanics-based
elastic-plastic model was explained in the companion
paper. Herein, the essential formulations in the model are
summarized.

To characterize the heterogeneity of the contact distri-

bution, the fabric tensor, Fy, is introduced, given by

Nd
F, = Vg J‘n,.njE(n)dQ (1')
Q
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where N is the number of contacts in an particle assembly,
V is the total volume of the assembly, d, is the mean
diameter of particles within an assembly, #; is the direction
of the contact normal, E(n) is the distribution function
of the contact normals, and Q is the unit sphere. The
orientation distribution function, E(n), is formulated based
on the spherical harmonics with the symmetry of the

vertical axis, as

30 +acos2y)

E@m)=E(y)= G-a) @

where ~ is the angle between the vertical axis in the global
coordinate system and the contact normal, and a is the
degree of fabric anisotropy.

Assuming the static hypothesis in defining the strains,

the incremental compliance tensor, Cyu, is expressed by

£ = Cpuby = {pc [, FK ) (mF,ﬁ)E(n)dﬂ}dk, (3)

where G and €5 are incremental stresses and strains, Kj
is the microscopic contact stitfness, F ,»,-'1 is the inverse of
the fabric tensor, and g is the contact density relating
to the void ratio, e, and co-ordination number, c,, such

that

_ _3(13.28 - 8e)
S mdi(l+e)  mii(1+e) )

o = N 3c,
4

The microscopic contact stiffness, Kj, in the global
coordinate system is related to the normal contact stiffness,
%k, and the tangential contact stiffness, °k, in the local

coordinate system as
_g g
Kij— knninj+ kr(sisj +titj) (5)

where n;, s;, and #; denote the unit vectors corresponding
the axes of the local coordinate system so that
As a general form, the elastic normal and tangential

contact stiffnesses, %k, and %%, is expressed by

ke =l OF ) £ (6)
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where frer is the normalizing constant (1 kN), ¢,” and ¢
are the material constants relating to the geometry of the
contact surface and the elastic modulus and Poisson’s ratio
of the particle, and #f, is the normal contact force in the
local coordinate system. The elastic-plastic normal contact
stiffness, “,%, which will be scaled up to the macroscopic

elastic-plastic response, is defined by

oy —crof, £ = A

where c,” is the material constant, & (=1.28) is the
exponent which governs the power relationship of elastic-
plastic contact behavior, and fv and & are the contact force
and displacement initiating the yielding of the contact. The
elastic-plastic tangential contact stiffenss, %k,.7, is defined
by

a
g f
gkfp chpgk:p[l— fr j

“f,tang, )

where ¢” is the material constant which is practically
the same as ¢,”, ¢,, is the friction angle of the particle,
a,” is the exponent defining the magnitude of nonlinearity
induced by the frictional responses. To take the fabric
evolution into account, the linear relationship between the
degree of fabric anisotropy, a, and the macroscopic stress
ratio, ¢/p, is employed, given by

a=a,+a(q/p) (10)

where ao is the degree of anisotropy in the isotropic stress
condition, and a, is the slope of a for the increase of
the stress ratio.

The approximate analytical solutions of cross-anisotropic

elastic moduli in the isotropic stress condition are derived

in terms of the micromechanical parameters, given by

o
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G:L:c:’cf{
where 0y is the macroscopic isotropic stress.

3. Identification of Micromechanics Parameters

The data obtained from a series of triaxial tests performed
by Kuwano and Jardine (2002) were used to evaluate the
model parameters. The soil was the Ham River sand with
physical properties as summarized in Table 1. Complete
details of the experiments are given by Kuwano (1999).
To measure the elastic properties of the tested material,
both small unload/reload cyclic tests and shear wave
measurements using bender elements were conducted.

Basically, the model parameters involved with the
elastic contact stiffhess are determined by simply matching
the approximate solutions of elastic moduli given in Eq.
(11) to the empirical expressions of elastic moduli (1963)
in the isotropic stress condition. The void ratio and mean
diameter of particles were previously determined based
on the physical properties for a specific sample. In the
matching process, elastic Poisson’s ratios are not considered
particularly because the experimental measurement of the
elastic Poisson’s ratios is relatively inaccurate.

For the isotropic stress of gy, the empirical expressions

of the cross-anisotropic elastic moduli are given by

Table 1. Physical properties of tested material (after Kuwano and Jardine, 2002)

) . ) Limit void ratio Particle distribution )
Mineralogy Specific gravity Particle shape
Emax Cmin D50 Uc
Quartz 2.66 0.849 0.547 0.27 mm 1.67 Sub-angular

Ue = Uniformity coefficient, Dsg = Mean particle size, ema = maximum void ratio, emin

void ratios were determined following BS 1377.
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E) = A4,f(e)p;" (0,)" (12a)
E; = 4,f(e)p,"(0,)" (12b)
Gy = A, f(@p,™ (o)™ (12¢)
Gy = Ay f(@)p,™ (o)™ (12d)

where A4,, An, Aw, and Ay, are the material constants, 7,
ny, ny, and n, are the exponents indicating the stress-level
dependence of experimental elastic moduli, and p, is the
atmospheric pressure (101.3 kPa), normalizing the macro-
scopic isotropic stress. The void ratio function, fle)=
(2.17—e)2/(1+e), used here is provided by Hardin and
Richart (1963).

The value of a,” can be easily determined by com-
paring the exponents in Eqs. (11) and (12). The average
of the experimentally determined values of n,, 7, ns, and
M, 18 taken as the value of anel, while the values of 4,,
Ap, Ay, and Ay, are also adjusted to compensate for the
change of the exponents in the empirical expressions.
Table 2 summarizes the measured values of 4 and », and
their adjustments for the further use.

The degree of fabric anisotropy in the isotropic stress
condition, ay, and the proportional factor, ¢, can be
determined by matching the moduli ratios, E,/E, and
G/ Gy, from the approximate solutions of Eq. (11) to

those from the empirical expressions as:

E! A4, (5-3a,)’| 14-2a,+c%(21+9a,)

El 4 Gta) 14~6ao+c:’<21—15ao)} (133)

Giy Ay _ (5-a,) [105-46a, ~23a? +c!'(70-24a, +2a2)

Gy 4, (+a)’| 21-11a, +¢¢ (14-10a,)

} (13b)

With the given values of 4, /4, and Aw, /A, the solution
of Egs. (13a) and (13b) yields the values of ao and e,
as summarized in Table 3. As can be seen in Table 3,
however, these estimations are unreasonable when con-
sidering the possible range of ¢.”, which should be
positive and less than 1.0 based on the Mindlin’s equation.
To avoid such anomalous results, the values of ay are
evaluated by employing either Eq. (13a) or Eq. (13b) with
a fixed value of ¢,/ = 0.824 based on the Poisson’s ratio
of 0.3 for the quartz. The remaining parameter, e, can
be evaluated by substituting all the pre-determined values
of ., ¢, a, e, and d, into Eq. (11) and matching these
to the empirical expressions in Eq. (12), thereby yielding
four different values of c,” for each test. The average
of four values is chosen as the representative value of
e

The sign of ap from Eq. (13a) is different from that
from Eq. (13b), which is physically inadmissible in an
identical sample. This contradictory result may come from
the particular assumption to estimate the elastic moduli:
Kuwano and Jardine (2002) assumed that the elastic
properties obtained from small-cyclic triaxial tests are
compatible with those from bender element tests to obtain
a complete set of cross-anisotropic elastic moduli. As
reported by Chaudhary et al. (2004) and Yimsiri and Soga
(2002), such discrepancy in the value of g was found
in other experimental data but has not been clearly
explained yet. Herein either set of parameters based on
Eq. (13a) or (14b) is selectively adopted. For instance,
the set of parameters based on Eq. (13a) is used to

compute the Young’s moduli such as E,” and Ey, while

Table 2. Material constants for empirical expressions of cross-anisotropic elastic stiffnesses (adjusted values are in parentheses)

. Exponent Relevant Expression
El M
astic Modulus A (MPa) P 5 Py (P, =101 3kPa)
EY A, = 204(204) 0.52(0.52) - 0.52(0.52) E? =A4,f(e)o,/p,)"
E! An = 174(176) - 0.53(0.52) 0.53(0.52) Ef' = A4, f(e)o,/p,)*
Gvp by
G:, Am = 72(72) 0.32(0.32) 0.20(0.20) 0.52(0.52) G, =A,f (e)[aVJ [ﬁ)
pa pa
P By
Gy Am = 81(82) —0.04(-0.03) 0.53(0.55) 0.50(0.52) Gy = Ahhf(e)(o-vj (g”—}
P, P,
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another set based on Eq. (13b) is chosen to compute the
elastic shear moduli such as G, and Gy

If the contact force to initiate the elastic-plastic defor-
mation of a single particle is fy, the magnitudes of elastic
contact stiffness and elastic-plastic contact stiffness are

approximately the same when f, = fy:

cy (f Y )a;p = C:l (f Y )a,‘;’ and C = Cil (f Y )a;"—a,‘;” (14)

In Eq. (14), the values of ¢,” and a,” were already
evaluated. The value of a,” is assumed to be 0.22 as
described in the companion paper so that the deter-
mination of fy is important to find the value of C,”. If
the yielding is initiated in the conical contact, fy can be

estimated by the following equation:

2
_ml -y

Jr=7 G! (15)

For the granular soils, the definite value of yield stress,
Y, is difficult to find, because the yielding or failure point
of brittle material is not well defined and affected by the

Table 3. Summary of the evaluated parameters

size of specimen and the confining pressure. However,
the yield stress can be estimated using the relation between
Vickers diamond pyramid hardness parameter, Hy, and the
yield stress, ¥, (Johnson 1985), given by

H, ~28Y (16)

For quartz, with a hardness of about 10 GPa (Brace
1963), the value of Y is the order of 3 GPa. The appro-
ximate value of r. can be obtained from the relation
between the shape of particle and the ‘roundness’ parameter
which is estimated by comparing the curvature of different
surface features in the particle to the lowest curvature that
can be assigned to the particle (e.g., the radius of the
largest sphere that can be inscribed in the particle). For
the ‘sub-angular’ particle, the value of 7. is about 3.4 ~
47107 mm (Jung 2004). For the selected material of
quartz, with G, = 29 GPa, v, = 031, Y = 3 GPa, and
re = 3X107 mm, the value of f is 5<10° kN. Using
Eq. (14), the value of C,* can be evaluated as summarized
in Table 3. The parametric studies are needed to evaluate

the remaining parameters, a; and o,?.

Material parameters Values Note
Void ratio €, 0.658 initial void ratio
Mean diameter d, (mm) 0.27 Dso
; 19775 using Eq. (13a); for £ and E}'
C" (kN/m) el el
17599 using Eqa. (13b); for Gy and G,
Elastic i ;
contactstiffness ol -0.982 using Eq. (13a) and (13b); not used
r 0.824 20=v ) (2=v,) for V, = 0.3
all 0.52 based on the experimental data
513.6 c® =9 ol —a?
cip (kN/m) n n,ng) s
4517 Sy = 5X107° kN for quartz
ep —_
Elastic—plastic &, 0.22 g =128
contact stiffnes c? 0.824 c? = ¢
a® 3.0 based on the parametric study
P, (deg) 26 referring to published data
-0.103 using Eq. (13a) and (13b); not used
Evolution of a 0.171 using Eq. (13a); for E and Ej
fabric. anisotropy -0.244 using Eqg. (13b); for G4 and Gy
a i 0.34 based on the parametric study
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4. Micromechanics Analysis of Granular Soils
4.1 Elastic Behavior

The main experimental features of macroscopic responses
in granular soils are summarized as: (i) the elastic responses
exhibit the cross-anisotropic elasticity, and (ii) the magnitude
of each elastic modulus depends on the stress level in
the form of the power function. These tWo features are
manifested as the empirical correlations of the elastic
moduli, thus the value of elastic modulus in any stress
state can be estimated from the empirical expressions such
as Eq. (12). From the viewpoint of the micromechanics
theory, it is supposed that the cross-anisotropy of soil
elasticity relates to the fabric tensor and the stress-level
dependency of elastic moduli relates to the nonlinear
contact stiffness depending on the level of contact forces,
respectively.

The problem arises in the quantitative assessment of
each role of two micro-mechanisms. In the previous
section, except for a), the required parameters for the
micromechanics analysis were precisely evaluated. Using
these parameters, the elastic moduli are computed along
two different stress paths—the isotropic compression and
the triaxial compression, as shown in Fig. 1.

Fig. 2 compares the computed values of the Young’s

moduli and elastic shear moduli for the isotropic compression
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Fig. 1. Stress paths for the numerical simulation

a
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(IC) to the experimental data of each test. The value of
a;, which relates the variation of a to the stress ratio, is
set to zero for the isotropic compression. As can be seen
in Fig. 2 (a), the computed and measured data are
practically identical, indicating that a certain degree of
errors in the approximation of the closed-form solutions
does not affect the reliability of prediction, partly due to
relatively low degrees of fabric anisotropy. Moreover, this
result confirms that the ignorance of the fabric evolution

by setting a; to zero does not affect the accuracy of
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Fig. 2 (a) Variation of elastic moduli (for the constant a in the
isotropic compression)
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Fig. 2 (b) Variation of elastic moduli (for the constant « in the
triaxial compression)
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prediction. This also implies that the soil fabric remains
constant when the samples are subject to the isotropic
stress. In the isotropic stress condition, therefore, the
stress-level dependency of cross-anisotropic elastic behavior
is fully explained based on the nonlinear contact stiffness
in the constant fabric condition. The exponent of the
power function in the normal contact stiffness manifests
itself as the exponent in the empirical expression of
cross-anisotropic elastic modulus in the isotropic stress
condition.

Fig. 2 (b) shows the computed and testing data during
the triaxial compression (TC). In this case the value of
a1 1s equal to zero, thus leading to the constant fabric
condition as it was in the isotropic compression. As shown
in Fig. 2 (b), even though the computed values of elastic
moduli keep increasing during loading, the computed
trend lines significantly differ from the experimental trend
in elastic moduli. This discrepancy implies that in the
anisotropic stress condition, the nonlinear contact stiffhess
at the constant fabric is not sufficient to explain the
stress-level dependency of elastic moduli, and thus the
remaining micromechanical feature—the evolution of fabric
anisotropy—must be taken into account.

Within the framework of this research, the evolution
of fabric anisotropy can be taken into account via a single
parameter ¢ in Eq. (10). As noted previously, the value
of a; implicitly includes the directional evolution of
contact forces during loading. To choose a proper value
of a1, a parametric study is conducted. In the parametric
study, the exponent of » in the empirical expression of
test data is compared to the exponent of « obtained by
the regression fitting on the computed elastic moduli of
ES, ES Ga, and Gy versus the applied stresses in
the triaxial compression. The average of four different
values of |1 - o for £, E, Gy, and G is taken to
plot against the variation of i, as shown in Fig. 3. The
results show that the value of |n - «| gradually decreases
as ap increase, and minimized when a; = 0.34. Hence,
the optimum expression to describe the evolution of fabric

anisotropy for the triaxial compression, is given by

0.20 T | ; |

0154 4

010} \o ]

000 A t | i
0.0 0.1 02 0.3 04 05

a,

[n-a

Fig. 3. Variation of |n—a] for the various values of @

a=a,+0.34(q/ p) (17)

A similar research on the variation of & via the discrete
element method (Jung et al. 2006) also confirms that a
simple linear relationship between @ and ¢/p is valid for
lower value of the stress ratio in the compression tests.
Using the value of a from Eq. (17) for a given g/p, the
elastic moduli are re-computed and compared to the
experimental data in Fig. 2 (c). As can be seen in Fig.
2 (c), all the trends of computed elastic moduli match
up with those of experimental trends.

The stress-level dependency of cross-anisotropic elastic
moduli can be completely explained only if one can fully
account for the evolution of fabric anisotropy in the
anisotropic stress condition, together with the nonlinearity
of the contact stiffness which is pronounced in the isotropic
stress condition. The evolution of fabric anisotropy can
quantitatively be expressed as the linear function of the
stress ratio, g/p, at least for the triaxial compression, while
the further calibration of Eq. (17) would be necessary for
the general loading conditions. The numerical results show
that as the stress ratio, g/p, changes, the state of fabric
needs to be changed along with the applied anisotropic
stresses to reproduce the experimental elastic response for
the given stress condition. As mentioned previously, the
evolution of fabric originates from the inelastic strains and
particle rotations in the microscopic level so that the
evolution equation of Eq. (17) indicates the magnitude
of effect of the inelastic behavior on the elastic responses.
To develop a complete micromechanics model aiming on

the simulation of overall elastic-plastic stress-strain behavior
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of granular soils, the change of fabric—loss and creation
of contacts followed by the change of contact directions—
should be taken into account in its formulation. The
feasibility of such formulation on the fabric evolution
could be examined based on the evolution equation such
as Eq. (17), which is independently derived from the

observation of experimental elastic responses.

4.2 Elastic-plastic Behavior

In the drained triaxial compression test (TC), the
simulation results obtained from the micromechanical
analysis with the elastic-plastic contact models were
compared with the experimental data. During TC, the
actual measurements related to the elastic-plastic behaviour
are taken on the vertical (axial) stresses, the vertical (axial)
strains and the horizontal (radial) strains. Thus, the physical
quantities directly obtained from the measurements are the
vertical Young’s modulus, £,”, and the Poisson’s ratio,
V" The arbitrary assumptions are usually accompanied
to obtain the other quantities such as £,%, w,* and v,?.
Herein, the quantitative comparisons between the computed
and the measured data will be limited to E,7 and 7.

In the micromechanics analysis, it is assumed that the
degree of fabric anisotropy continuously changes with the
stress ratio. The inclination of the linear a- 7 curve, a;
is set to 0.34 which gives the best-fitting results for the
stress-level-dependent behavior of the elastic moduli. The
initial value of the degree of fabric anisotropy, an, however,
is still uncertain because the inconsistency in the value
of ap is not resolved. Thus, the possible values of ap
between 0.171 from Eq. (13a) and -0.224 from Eq. (13b)
are applied and the different responses of elastic-plastic
modulus, £,7, are examined. In addition, as discussed in
the previous section, the parameter «,? for the tangential
contact stiffness is not defined. Herein, the value of «,?
is set to 3.0 based on the parametric study conducted by
Jung (2004). Fig. 4 summarizes the results of the simulation

for 0,% =

3.0. It is noted that the scattering of measured
tangent modulus in Fig. 4 (a) is inevitable due to the
limitation of measurement of the stresses and strains at

small strains. The scatters of tangent modulus do not
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appear in the variation of secant modulus as shown in

Fig. 4 (b).

The numerical results in Fig. 4 provide useful infor-
mation on the elastic-plastic behavior during the axial
compression. Fig. 5 shows the stress-strain curves in the
vertical direction for various strain levels. The numerical
findings for the elastic-plastic behavior during triaxial
compression are:

(1) The plastic strains are likely to occur even at very
small strains. The linear response of the stress-strain
curve at very small strains does not indicate the pure
elastic response of soils. Combination of the increasing
elastic modulus with the increasing vertical stress and
the plastic strains degrading the slope of stress-strain
curve produces the apparent linearity in the initial part
of the stress-strain curve.

(2) At very small strains, the effect of plastic straining on
the degradation of elastic-plastic modulus is minimized

when the initial state of soil is under the isotropic
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Fig. 4 (a) Variation of E; with the different @, during triaxial
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Fig. 5 (c) Stress-strain curves in the vertical direction (up to 0.02%)

fabric condition (i.e. ao=0.0). The larger ay deviates
from the isotropic value of 0.0, the larger decrease
of initial modulus takes place.

(3) When ap >0, the increasing pattern of E,” appears
at small strains. Due to the increasing modulus, the
apparent linear range in the stress-strain relations
increased up to about & =0.01% (see Fig. 5(c)). When
aq is less than or equal to zero, however, E,” conti-
nuously decreased with the axial strains. If the increase
of E,” can be regarded as the linear elastic response,
the size of elastic region increases as the value of
ap increases.

(4) For a specific value of «,?, the magnitude of E,%
for the higher value of ap is larger than that for the
lower value of ay after the axial strain exceed 0.01%.

It is interesting that the values of E,? increase in the
small strain range and the corresponding ‘S-shaped’
stress-strain relationship appears when ap > 0.0. The
similar pattern of increasing E,* can be found in the other

experimental results reported by Kohata et al. (1997).

They observed that the increasing E,” and the ‘S-shaped’
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Fig. 5 (d) Stress-strain curves in the vertical direction (Up to 0.002%)

stress-strain relationships in the cyclic pre-strained specimens
in which the larger number of cycles was applied to the
specimen, the higher increase of E,* took place. This
experimental phenomena are very similar to the numerical
results for ao> 0 in Figs. 4 and 5. In terms of micro-
mechanics, it can be thought that the process of the cyclic
pre-straining increases the number of contacts in the
vertical (axial) direction. The maximum value of E,* for
ap = +0.171 is larger than that for gy = +0.1. Based on
the above discussion, one can conclude that the increase
of E,7 during compression is the distinctive feature of
the stress-strain response for the initial fabric condition
with ao> 0. It is noted that the experimental data of
stress-strain curves in Fig. 5 does not show the particular
‘S-shaped’ pattern during compression. This may imply
that the initial state of fabric anisotropy is close to the
condition with ag < 0. There is a possibility that ao <0.0
obtained from Eq. (13b) represents the real state of the
initial condition of specimen more closely.

Fig. 6 shows the contribution of elastic and plastic

strains to the total strains in the vertical direction. For
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convenience, the numerical results for ap = -0.1, which
closely matched the experimental relationship between
E,* and &, are analyzed. The strains are decomposed into
the components induced by normal and tangential contacts
displacements to investigate the effect of contact stiffnesses
on the overall behavior of elastic-plastic straining.
Fig. 6 shows that the contribution of elastic strains,
which initially occupies about 80% of total strains, con-
tinuously reduces during axial compression. The elastic
strains induced by the tangential contacts have a consider-
able portion of total elastic strains compared with those
induced by the normal contacts. However, in case of the
plastic strains, the different pattern of the contribution of
strains induced by the normal and the tangential contacts
takes place. The ratio of plastic strains induced by the
normal contacts is very small in the overall strain range.
The plastic strains induced by the tangential contacts occupy
most of the plastic strains. Thus, one may conclude that

the plastic strains, which reduce the stiffness in the vertical
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direction, are mainly controlled by the properties of

tangential contact stiffness. The contributions of elastic

and plastic strains in the total horizontal strains, however,
are quite different from those in the vertical strains. Fig.

7 shows the ratio of elastic and plastic strains to the total

strains in the horizontal direction. The differences between

the responses in the vertical and horizontal strains can
be summarized as follows:

(1) While both of the elastic strains induced by the normal
contact and the elastic strains induced by the tangential
contact are in compression in the vertical direction,
the direction of horizontal strains induced by the
normal contact are opposite to that by the tangential
contact. The elastic strains induced by the normal
contacts are devéloped in the compression side of the
horizontal direction, but the elastic strains induced by
the tangential contacts are in the extension. The same
pattern of the plastic straining takes place.

(2) In the horizontal strains, the ratio of elastic strain to



total strain is only about 20~40% even at the very
small strains. The horizontal strains induced by the
plastic deformation or slippage induced by the tangential
contacts occupy most of the horizontal strains during
axial loading. Similar to the pattern of the vertical
strains, the plastic strains induced by the normal
contacts occupy the small portion of the total plastic
strains in the overall horizontal strains.

The cross-anisotropic Poisson’s ratios are also affected
by the magnitude of the horizontal strains. Fig. 8 shows
the variation of cross-anisotropic Poisson’s ratios during
triaxial compression. In the triaxial compression, the value
of vin”=-68" /567 can be measured during test. The
pattern of variation in the computed values of ws¥ is
similar to that in the test data. For the elastic-plastic values
of Poisson’s ratios, 1447 is generally higher than 15,7 and
vin” because the magnitude of w7 is significantly
affected by the magnitude of &,. In the overall strains,
vin” tanging from 0.1 to 0.35 is lower than the other two
Poisson’s ratios. It should be noted that the elastic
Poisson’s ratios are nearly zero and do not exceed 0.1.
The value of 1,? increases with the axial strains from
the values close to 1" to the values of w7 =-Saf” /55"
Hayano and Tatsuoka (1997) reported the similar behavior
of v, v and 1 from a drained triaxial compression
test, from which it may be considered that values of ;"
exceeding 0.1 at the very small strains in the drained
compression test indicate the generation of the plastic
strains primarily induced by tangential contacts.

The above analysis results ascribed the overall deg-
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Fig. 8. Cross-anisotropic Poisson’s ratios during triaxial com-
pression

radation of soil stiffness mainly to the plastic strains
induced by the tangential contacts. However, the shear
failure of particulate materials after dilation seems not to
be massive as much as the micromechanics model predicts.
Even before failure, the groups of particles, in general,
move together in ‘wedges’. Eventually, neighboring wedges
become kinematically locked, they shear, and a new
subsystem of wedges is formed. In many cases, deformations
continue localizing in narrow shear bands. Once such
mechanism is formed, the blocks bound by the slip plane
move as rigid bodies and deformation localizes within the
slip planes producing progressive failure. The internal
energy exerted on the tangential contacts at the early stage
of shearing is transferred to the localized slip plane
generating two sliding ‘wedges’ at the large strains. The
micromechanics approach with homogenization technique
adopted in this study cannot simulate such a localization
of the particulate structure experiencing large strains.
Consequently, there is a possibility to underestimate the
stiffnesses of soils subjected to the large deviator stress.
The plastic strain in every single contact in the homo-
genization technique leads to the excessive volumetric
expansion at the early stage of shearing. Fig. 9 compares
the volumetric strains in the test data and the numerical
results in the large strain range. While the computed
stress-strain relationship shows the good agreement before
the deviator stress reaches a stress point at the onset of
marked dilation, significant discrepancy between the test
and computed data appears after the apparent dilation

takes place. Different method such as the bifurcation
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Fig. 9. Vertical and volumetric strains during shearing in test data
and simulations
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analysis would be useful to predict the stress-strain behavior

after a particulate material shows the dilation.

5. Conclusions

In terms of the micromechanics theory, the elastic and
elastic-plastic responses of deformation of granular soils
are meticulously analyzed. To guarantee the high accuracy
of the microscopic parameter, the systematic procedure
to evaluate the parameters is provided. The parameters
involved with the elastic contact stiffness are mainly
evaluated by the direct comparison between the empirical
expression of cross-anisotropic elastic moduli and the
micromechanics-based analytical solutions. The parameters
to formulate the elastic-plastic contact stiffness are deter-
mined based on the published experimental data for the
metallic materials as well as the material references.

The analysis of the elastic response during the isotropic
and triaxial compression shows that the stress-level depen-
dency of cross-anisotropic elastic moduli is induced by
the power relationship of the contact force in the normal
contact stiffness, while the evolution of fabric anisotropy
is more pronounced during triaxial compression. The
evolution of fabric anisotropy is quantitatively evaluated
by observing the difference between the experimental data
and the micromechanical predictions.

In the light of the micromechanics theory, the elastic-
plastic responses of soil deformation are thoroughly
scrutinized. The micromechanical analysis indicates that
the plastic strains are likely to occur at the very small
strains. The linear response of the stress-strain curve at
the very small strains does not represent the pure elastic
response of soils. The combination of the stress-level-
dependent elastic modulus and the plastic straining generates
the apparent linearity in the initial part of the stress-strain
curve. The magnitude of the elastic strains induced by
the tangential contacts is comparable to the strains induced
by the normal contacts. However, in the case of the plastic
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strains, the pattem of contribution between the normal and
the tangential contacts is different from the elastic case.
The ratio of plastic strains induced by the normal contacts
to the total plastic strains is very small in the overall strain
range. The plastic strains induced by the tangential contacts
occupy most of the plastic strains. The plastic deformation
of tangential contacts has an important role in the reduction

of soil stiffness during axial loading.
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