Effects of Phytoecdysteroid on the Proliferation and Activity of Bone Cells

Phytoecdysteroid가 조골세포와 파골세포의 성장과 활성에 미치는 영향

  • Ko, Seon-Yle (Department of Oral Biochemistry, School of Dentistry, Dankook University)
  • 고선일 (단국대학교 치과대학 구강생화학교실)
  • Published : 2007.06.30

Abstract

Ecdysteroids are known as insect molting hormone. At the same time, ecdysteroids and plant ecdysteroids (phytoecdysteorids) reveal beneficial effects on mammal. The present study was undertaken to determine the possible cellular mechanism of action of phytoecdysteroids in bone metabolism. The effects on the osteoblasts were determined by measuring cell proliferation, alkaline phosphatase (ALP) activity, and gelatinase activity. The effects on the osteoclasts were investigated by measuring tartrate-resistant acid phosphatase (TRAP)(+) multinucleated cells (MNCs) formation after culturing osteoclast precursors. Phytoecdysteroid treatment showed a increase in ALP activity of osteoblasts. Phytoecdysteroid increased the activity of gelatinase. In addition, phytoecdysteroid decreased the osteoclast generation induced by macrophage-colony stimulating factor (M-CSF) and receptor activator of NF-kB ligand (RANKL) in (M-CSF)-dependent bone marrow macrophage (MDBM) cell cultures. Taken these results, phytoecdysteroid may be a regulatory protein within the bone marrow microenvironment.

Ecdysteroid는 곤충의 탈피호르몬으로 알려져 있으며, phytoecdysteroid는 식물의 ecdysteroid로 포유동물에 여러 유용한 효과를 가진다고 알려져 있다. 본 연구는 식물의 phytoecdysteroids가 골대사에서 미치는 영향을 알아보기 위하여 세포수준에서 관찰하였다. 즉 조골세포에 미치는 영향을 알아보기 위하여 세포증식율, 염기성인산분해효소 활성, gelatinase 활성의 변화를 관찰하였고, 파골세포에 미치는 영향을 알아보기 위하여 tartrate-저항성 인산분해효소 양성인 다핵세포의 형성을 측정함으로써 관찰하였다. Phytoecdysteroid 처리에 의해 조골세포의 ALP 활성과, gelatinase의 활성이 증가되었다. 또한 phytoecdysteroid는 macrophage-colony stimulating factor (M-CSF)와 receptor activator of NF-kB ligand (RANKL)에 의해 유도된 파골세포의 생성을 감소시켰다. 이상의 결과 phytoecdysteroid는 조골세포와 파골세포의 활성 및 생성을 변화 시킴으로써 골수의 미세환경에서 세포내 조절작용에 관여하리라 여겨진다.

Keywords

References

  1. Wasnich R. What is an osteoporotic fracture? In Rosen CJ (Ed). Osteoporosis: Diagnotic and Therapeutic Principles, Totowa, 1996, Humana Press, pp. 79-88
  2. Ha H, Kwak HB, Lee SW et al. Reactive oxygen species mediate RANK signaling in osteoclasts. Exp Cell Res 2004;301:119-127 https://doi.org/10.1016/j.yexcr.2004.07.035
  3. Reddy SV. Regulatory mechanisms operative in osteoclasts. Crit Rev Eukaryot Gene Expr 2004;14: 255-270 https://doi.org/10.1615/CritRevEukaryotGeneExpr.v14.i4.20
  4. Kholodova Y. Phytoecdysteroids: biological effects, application in agriculture and complementary medicine (as presented at the 14-th Ecdysone Workshop, July, 2000, Rapperswil, Switzerland). Ukr Biokhim Zh 2004;73:21-29
  5. Cai YJ, Dai JQ, Fang JG et al. Antioxidative and free radical scavenging effects of ecdysteroids from Serratula strangulata. Can J Physiol Pharmacol 2002; 80:1187-1194 https://doi.org/10.1139/y02-152
  6. Syrov VN, Kurmukov AG. Anabolic activity of phytoecdysone-ecdysterone isolated from Rhaponticum carthamoides(Willd). Iljin Farmakol Toksikol 1976;39:690-693
  7. Li XQ, Wang JH, Wang SX et al. A new phytoecdysone from the roots of Rhaponticum uniflorum. J Asian Nat Prod Res 2002;2:225-229 https://doi.org/10.1080/10286020008039915
  8. Yao QY, Hu DF. Determination of ecdysones in polyploid and monoploid Achyranthes bidentata Bl. Zhongguo Zhong Yao Za Zhi 1989;14:210-254
  9. Chiang HC, Wang JJ, Wu RT. Immunomodulating effects of the hydrolysis products of formosanin C and beta-ecdysone from Paris formosana Hayata. Anticancer Res 1992;12:1475-1478
  10. Catalan RE, Martinez AM, Aragones MD. Alterations in rat lipid metabolism following ecdysterone treatment. Comp Biochem Physiol B 1985;81:771-775 https://doi.org/10.1016/0305-0491(85)90403-1
  11. Syrov VN, Khushbaktova ZA, Komarin AS et al. Experimental and clinical evaluation of the efficacy of ecdysten in the treatment of hepatitis. Eksp Klin Farmakol 2001;64:56-58
  12. Bathori M, Kalman A, Toth G et al. Ecdysteroids of Silene italica ssp. nemoralis, novel approaches of ecdysteroid therapy. Acta Pharm Hung 2004;74: 131-141
  13. Yang SF, Wu ZJ, Yang ZQ et al. Protective effect of ecdysterone on PC12 cells cytotoxicity induced by beta-amyloid25-35. Chin J Integr Med 2005;11: 293-296 https://doi.org/10.1007/BF02835792
  14. Bathori M. Phytoecdysteroids effects on mammalians, isolation and analysis. Mini Rev Med Chem 2002;2: 285-293 https://doi.org/10.2174/1389557023406269
  15. Siffert RS. The role of alkaline phosphatase in osteogenesis. J Exp Med 1951;93:415-422 https://doi.org/10.1084/jem.93.5.415
  16. Fauran-Clavel MJ, Oustrin J. Alkaline phosphatase and bone calcium parameters. Bone 1986;7:95-99 https://doi.org/10.1016/8756-3282(86)90680-0
  17. Nijweide PJ, Burger EH, Feyen JHM. Cells of bone: Proliferation, differentiation, and hormonal regulation. Physiol Rev 1986;66:855-886 https://doi.org/10.1152/physrev.1986.66.4.855
  18. Matrisian LM. The matrix-degrading metalloproteinases. Bioessays 1992;14:455-463 https://doi.org/10.1002/bies.950140705
  19. Kleiner DE, Stetler-Stevenson WG. Matrix metalloproteinases and metastasis. Cancer Chemother Pharmacol 1999;43:S42-S51 https://doi.org/10.1007/s002800051097
  20. Galis ZS, Muszynski M, Sukhova GK et al. Cytokine -stimulated human vascular smooth muscle cells synthesize a complement of enzyme required for extracellular matrix digestion. Circ Res 1994;75: 181-189 https://doi.org/10.1161/01.RES.75.1.181
  21. Johnson JL, van Eys GJ, Angelini GD et al. Injury induces dedifferentiation of smooth muscle cells and increased matrix-degrading metalloproteinase activity in human saphenous vein. Arterioscler Thromb Vasc Biol 2001;21:1146-1151 https://doi.org/10.1161/hq0701.092106
  22. Suda T, Takahashi N, Udagawa N et al. Modulation of osteoclast differentiation and function by the new members of the tumor necrosis factor receptor and ligand families Endocr Rev 1999;20:345-357 https://doi.org/10.1210/er.20.3.345
  23. Takahashi N, Yamana H, Yoshiki S et al. Osteoclast -like cell formation and its regulation by osteotropic hormones in mouse bone marrow cultures. Endocrinol 1988;122:1373-1382 https://doi.org/10.1210/endo-122-4-1373
  24. Takahashi N, Akastu T, Sasaki T et al. Induction of calcitonin receptors by 1$\alpha$,25-dihydroxyvitamin $D_3$ in osteoclast-like multinucleated cells formed from mouse bone marrow cells. Endocrinol 1988;123:1504-1510 https://doi.org/10.1210/endo-123-3-1504
  25. Sasaki T, Takahashi N, Higashi S et al. Multinucleated cells formed on calcified dentin from mouse bone marrow cells treated with 1$\alpha$,25-dihydroxyvitamin D3 have ruffled borders and resorb dentin. Anat Rec 1989;224:379-391 https://doi.org/10.1002/ar.1092240307
  26. Minkin C. Bone acid phosphatase: Tartrate-resistant acid phosphatase as a marker of osteoclast function. Calcif Tissue Int 1982;34:285-290 https://doi.org/10.1007/BF02411252