Characterization of Microbial Communities in a Groundwater Contaminated with Landfill Leachate using a Carbon Substrate Utilization Assay

탄소원 이용도 평가를 활용한 매립지 침출수로 오염된 지하수의 미생물 군집 특성 해석

  • Koo, So-Yeon (Department of Environmental Science and Engineering, Ewha Womans University) ;
  • Kim, Ji-Young (Department of Environmental Science and Engineering, Ewha Womans University) ;
  • Kim, Jai-Soo (Department of Life Science, Kyonggi University) ;
  • Go, Kyung-Seok (Korea Institute of Geoscience & Mineral Resources) ;
  • Lee, Sang-Don (Department of Environmental Science and Engineering, Ewha Womans University) ;
  • Cho, Kyung-Suk (Department of Environmental Science and Engineering, Ewha Womans University) ;
  • Go, Dong-Chan (Korea Institute of Geoscience & Mineral Resources)
  • Published : 2007.04.30

Abstract

The microbial community properties of groundwater samples contaminated with landfill leachates were examined using Ecoplate including 31 sole carbon sources. The samples were KSG1-12 (leachate), KSG1-16 (treated leachate), KSG1-07 (contaminated groundwater), KSG1-08 (contaminated groundwater), and KSG1-13 (uncontaminated groundwater). Among the carbon sources used as substrates, 2-hydroxy benzoic acid, D,L-$\alpha$-glycerol phosphate, and D-malic acid were not utilized in any sample, while D-xylose, D-galacturonic acid, L-aspargine, tween 80, and L-serine were utilized in all 5 samples. The rest of substrates showed very different patterns among the samples. Average well color development (AWCD) analysis demonstrated that the potential activity on 31 substrates was in the order of KSG1-16 > KSG1-12 > KSG1-07 > KSG-08 > KSG1-13, which generally agrees with the degree of pollution, except KSG1-16. Principal component analysis (PCA) on similarity between samples showed two groups (KSG1-12, -07 and -08 vs KSG1-16 and -13), coinciding with contaminated and uncontaminated groups. Shannon index showed that the microbial diversities were similar among the samples.

매립지 침출수로 오염된 지하수의 미생물 군집특성을 31가지 탄소원을 가지는 Ecoplate를 사용하여 조사하였다. 각 기질에 대한 탄소이용도는 시료에 따라 달랐고, 2-hydroxy benzoic acid, D,L-$\alpha$-glycerol phosphate, D-malic acid는 모든 시료에서 기질로써 이용되지 못했고, D-xylose, D-galacturonic acid, L-aspargine, tween 80, L-serine는 모든 시료에서 탄소원으로 사용되었고, 나머지는 시료에 따른 차이를 보였다. AWCD에 의한 통계분석결과는 KSG1-16 > KSG1-12 > KSG1-07 > KSG-08 > KSG1-13 순인데 예상대로 비오염 지하수 시료인 KSG1-13가 가장 낮았으며, 오염 된 지하수 시료 KSG-07과 KSG1-08는 이보다 높았으나 처리수인 KSG1-16이 높은 것은 의외이었다. PCA방법에 의한 통계 분석결과는 침출수(KSG1-12) 및 오염지하수(KSG1-07, KSG1-08)와 오염되지 않은 처리수(KSG1-16) 및 비오염 지하수(KSG1-13)로 크게 둘로 유사성이 구분되었다. 그러나, 미생물의 다양성을 나타내는 Shannon index 값에 의한 분석은 시료간의 별 차이를 나타내지 않아 서로 유사하였다.

Keywords

References

  1. 김재수, 김지영, 구소연, 고경석, 이상돈, 조경숙, 고동찬, 2000, DGGE를 이용한 매립지 침출수로 오염된 지하수의 세균군집분 석, 한국미생물생명공학회지, 34(2), 166-173
  2. de Lipathay, J.R., Johnsen, K., Albrechtsen, H.-J., Rosenberg, P., and Aamand, J., 2004, Bacterial diversity and community structure of a sub-sursurface aquifer exposed to realistic low herbicide concentrations, FEMS Microbiol. Ecol., 49, 59-69 https://doi.org/10.1016/j.femsec.2004.02.007
  3. Garland, J.L., 1997, Analysis and interpretation of communitylevel physiological profiles in microbial ecology, FEMS Microbiol. Ecol., 24, 289-300 https://doi.org/10.1111/j.1574-6941.1997.tb00446.x
  4. Garland, J.L. and Mills, A.L., 1991, Classification and characterization of heterotrophic microbial communities on the basis of patterns of community-level, sole-carbon-source utilization, Appl. Environ. Microbiol., 57, 2351-2359
  5. Garland, J.L. and Mills, A.LA., 2001, Relative effectiveness of kinetic analysis vs single point readings for classifying environmental samples based on community-level physiological profiles (CLPP), Soil Biol. Biochem., 33, 1059-1066
  6. Heuer, H. and Smalla, K., 1997, Application of denaturing gradient gel electrophoresis and temperature gradient gel electrophoresis for studying soil microbial communities, Modern Soil Microbiology, Marcel Dekker Inc, New York, p. 353-373
  7. Konopka, A., Oliver, L., and Turco, R.F., 1998, The use of carbon substrate utilization patterns in environmental and ecological microbiology, Microb. Ecol., 35, 103-115 https://doi.org/10.1007/s002489900065
  8. Muyzer, G. and Smalla, K., 1998, Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) in microbial ecology, Anton. Leeuwenhoek Int. J. Gen. Microbiol., 73, 127-141 https://doi.org/10.1023/A:1000669317571
  9. Roling, W.F.M., van Breukelen, B.M., Braster, M., Goeltom, M.T., Groen, J., and van Verseveld, H.W., 2000, Analysis of microbial communities in a landfill leachate polluted aquifer using a new method for anaerobic physiological profiling and 16S rDNA based fingerprinting, Microb. Ecol., 40, 177-188
  10. Roling, W.F.M., van Breukelen, B.M., Braster, M., Lin, B., and van Verseveld, H.W., 2001, Relationships between microbial community structure and hydrochemistry in a landfill leachatepolluted aquifer, Appl. Environ. Microbiol., 67, 4619-4629 https://doi.org/10.1128/AEM.67.10.4619-4629.2001
  11. Tian, Y., Yang, H., Wu, X., and Li, D., 2005, Molecular analysis of mircobial community in a groundeater sample polluted by landfill leachate and seawater, J. Jhejiang Univ. SCI, 6B, 165- 107 https://doi.org/10.1631/jzus.2005.B0165