DOI QR코드

DOI QR Code

Study on Correlation Between Feed Protein Fractions and In situ Protein Degradation Rate

사료 단백질의 Fraction과 In situ 단백질 분해율의 상관관계에 관한 연구

  • Lee, S.Y. (School of Agricultural Biotechnology, Seoul National University) ;
  • Chung, Y.S. (School of Agricultural Biotechnology, Seoul National University) ;
  • Song, J.Y. (School of Agricultural Biotechnology, Seoul National University) ;
  • Park, S.H. (School of Agricultural Biotechnology, Seoul National University) ;
  • Sung, H.G. (School of Agricultural Biotechnology, Seoul National University) ;
  • Kim, H.J. (School of Agricultural Biotechnology, Seoul National University) ;
  • Ko, J.Y. (Livestock and Feed Research Institute, National Agricultural Cooperative Federation) ;
  • Ha, Jong-Kyu (School of Agricultural Biotechnology, Seoul National University)
  • 이세영 (서울대학교 농생명공학부) ;
  • 정유석 (서울대학교 농생명공학부) ;
  • 송재용 (서울대학교 농생명공학부) ;
  • 박성호 (서울대학교 농생명공학부) ;
  • 성하균 (서울대학교 농생명공학부) ;
  • 김현진 (서울대학교 농생명공학부) ;
  • 고종열 (농협중앙회 축산사료연구소) ;
  • 하종규 (서울대학교 농생명공학부)
  • Published : 2007.06.30

Abstract

This experiment was conducted to determine correlation between in vitro protein fractions and in situ protein degradation rate with major dairy protein sources(soybean meal, corn gluten meal, cotton seed meal, kapok seed meal and perilla meal). Five protein fractions were obtained according to the Cornell Net Carbohydate and Protein System(CNCPS), and in situ protein degradation rates were determined by technique using nylon bags incubated for 0, 4, 8, 12 and 24hrs in the rumen of three Holstein steers. Fraction A was highest in kapok seed meal(14.6%) and lowest in corn gluten meal(0.6%) (P<0.05). The highest B1, B2 and B3 fractions were contained in soybean meal(8.27%), cotton seed meal(74%), and perilla meal(40%), respectively. Corn gluten meal was very high in fraction C. In situ protein degradation rate of soybean meal was 98%, highest among five protein sources, and corn gluten meal had the lowest rate at 28%. Correlation analysis showed that easily soluble fractions of both methods, in situ protein degradation rate and digestible protein fractions, and in situ protein degradation rate minus “a” and fraction B2+B3 were highly correlated. These results indicate that in vitro protein fractionation can be used in the estimation of in situ protein degradation.

본 연구는 국내에서 사용되고 있는 몇 가지 단백질 원료사료를 사용하여 단백질 fraction과 in situ 단백질 분해율을 구한 다음 이들 사이에서의 상관관계를 살펴보고자 실시하였다. 원료사료는 대두박, 콘글루텐, 면실박, 카폭박 및 임자박이었다. 단백질 fraction은 CNCPS에서 제시하는 방법으로 구하였으며, in situ 단백질 분해율은 캐뉼라가 장착된 홀스타인 거세우 3두를 이용하여 반추위에서 원료사료를 4, 8, 12 및 24시간 배양하여 구하였다. 단백질 fraction 중 A fraction은 카폭박이 14.6%로 가장 높았고, 콘글루텐이 0.6%로 가장 낮았다(P<0.05). B1 fraction은 대두박이 8.27%로 가장 높았으며, B2 fraction은 대두박과 면실박이 74%로 가장 높았다. B3 fraction은 임자박이 40%로 다른 원료사료에 비교해 뚜렷하게 높았다. C fraction은 콘글루텐이 약 42.5%로 가장 높았다. In situ 조단백질 분해율은 대두박이 98%로 가장 높았고, 콘글루텐은 28%로 가장 낮았다. 단백질 fraction과 in situ 분해율 사이의 상관관계를 보면, 쉽게 용해되는 부분(A, B1 fraction vs a값) 사이에, in situ 조단백질 분해율과 소화가능한 단백질 fraction 사이에, 그리고 in situ 조단백질 분해율에서 a값을 제외한 값과 B2+B3 fraction 사이에는 상관관계가 높았다(P<0.01). 본 연구결과에 의하면, 단백질 fraction은 원료사료의 반추위내 분해율을 추정하는 데 이용될 수 있을 것으로 사료되며, 앞으로 더 정확한 평가를 위해서는 더 많은 원료사료에 대한 분석이 필요하다고 본다.

Keywords

References

  1. 윤칠석, 김덕영, 이남형. 1990. In situ 방법에 의한 국내이용 단백질 사료원에 대한 단백질 분해율에 고나한 조사. 한국축산학회지. 32(5):264-270
  2. AOAC. 1990. Official Methods of Analysis. 15th ed. Association of Official Analytical Chemists. Washington, D. c, USA
  3. Broderick, G. A 1987. Determination of protein degradation rates using a rumen in vitro system containing inhibitors of microbial nitrogen metabolism. Br. J. Nutr. 58:463-475 https://doi.org/10.1079/BJN19870114
  4. Ceresnakova, Z., Sommer, A, Chirenkova, M. and Dolesova, P. 2002. Amino acid profile of escaped feed protein after rumen incubation and their intestinal digestibility. Arch. Anim. Nutr. 56:409-418 https://doi.org/10.1080/00039420215636
  5. CNCPS. 2003. Connell Net Carbohydrate and Protein System. A manual for the Net Carbohydrate and Protein System for Evaluation Herd Nutrition and Nutrient Excretion. CNCPS ver. 5.0. Cornell Univ., Ithaca, NY
  6. Cozzi, G. and Polan, C. E. 1994. Com gluten meal or dried brewers grains as partial replacement for soybean meal in the diets of Holstein cows. J. Dairy Sci. 77:825-834 https://doi.org/10.3168/jds.S0022-0302(94)77017-X
  7. Erasmus, L J., Bolha, P. M., Cruywagen, C. W. and Meissner, H. H. 1994. Amino acid profile and intestinal digestibility in dairy cows of rumenundegradable protein from various feedstuffs. J. Dairy Sci. 77:541-551 https://doi.org/10.3168/jds.S0022-0302(94)76982-4
  8. Licitra, G., Hernandez, T. M. and Van Soest, P. J. 1996. Standardization of procedures for nitrogen fractionation of ruminant feeds. Anim. Feed Sci. Technol. 57:347-358 https://doi.org/10.1016/0377-8401(95)00837-3
  9. Licitra, G., Lauria, P., Carpino, S., Schadt, J., Sniffen, C. J. arid Van Soest, P. J. 1998. Improvement of the Streptomyces griseus method for degradable protein in ruminant feeds. Anim. Feed Sci. Technol. 72:1-10 https://doi.org/10.1016/S0377-8401(97)00178-8
  10. Luchini, N. D., Broderick, G. A and Combs, D. K. 1996. Characterization of the proteolytic activity of commercial proteases and strained ruminal fluid. J. Anim. Sci. 74:685-692 https://doi.org/10.2527/1996.743685x
  11. Menke, K. H. and Steingass, H. 1988. Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. Anim. Res. Dev. 28:7-55
  12. NRC. 1996. Nutrient Requirements of Beef Cattle. 7th rev. ed Natioml Academy Press. Washington, D.C
  13. NRC. 1996. Nutrient Requirements of Beef Cattle. 7th rev. ed Natioml Academy Press. Washington, D.C
  14. Orskov, E. R. and McDonald, P. 1979. The estimation of protein degradability in the rumen from incubation measurements weighted according to rate of passage. J. Agric. Sci., Camb. 92, 499503
  15. SAS. 2002. User's Guide: Statistical Analysis System. Version 9.1 Editions. SAS Inst., Inc., Cary, NC, USA
  16. Shannak, S., Sndekum, K. -H. and Susenbeth, A. 2000. Estimating ruminal crude protein degradation with in situ and chemical fractionation procedures, Anim Feed Sci. Technol. 85:195-214 https://doi.org/10.1016/S0377-8401(00)00146-2
  17. Snedecor, G., Cochran, W. and Cox, D. 1989. Statistical Methods (8th edition). The Iowa State University Press
  18. Sniffen, C. J., O'Connor, J. D., Van Soest, P. J., Fox, D. G. and Russell, J. B. 1992. A net carbohydrate and protein system for evaluating cattle diets: II. Carbohydrate and protein availability. J. Anim. Sci. 70, 3562-3577 https://doi.org/10.2527/1992.70113562x
  19. Stem, M. D. and Satter, L. D. 1982. In vivo estimation of protein degradability in the rumen. In Protein Requirements for Cattle Symp. F. N. Owens, ed, Oklahoma State University, Stillwater. p57
  20. Tilly, J. M. and Terry, R. A. 1963. A two-stage technique for the in vitro digestion of forage crops. J. Br. Grassl. Soc.18:104-111 https://doi.org/10.1111/j.1365-2494.1963.tb00335.x
  21. Van Straalen, W. M. and Tamminga, S. 1990. Protein degradation of ruminant diets, In Feedstuff evaluation, 1. Livestock Feedstuffs. Composition. J. Wiseman and D.JA Cole. (Eds.) Butterworths, London, UK, pp. 55-n
  22. Van Straalen, W. M., Odiga, J. J. and Mostert, W. 1997. Digestion of feed amino acids in the rumen and small intestine of dairy cows measured with nylon-bag techniques, Br. J. Nutr. 77:83-97 https://doi.org/10.1079/BJN19970106
  23. Varvikko, T. and Lindberg, J. E. 1985. Estimation of microbial nitrogen in nylon-bag residues by feed $^{15}N$ dilution. Br. J. Nutr. 54:473-481 https://doi.org/10.1079/BJN19850132
  24. Zhao, G. Y. and Cao, J. E. 2004. Relationship between the in vitro-estimated utilizable crude protein and the Cornell Net Carbohydrate and Protein System crude protein fractions in feeds for ruminants. J. Anim. Physiol. Anim. Nutr. 88:301310 https://doi.org/10.1111/j.1439-0396.2004.00485.x