DOI QR코드

DOI QR Code

Analysis of SNPs in Bovine CSRP3, APOBEC2 and Caveolin Gene Family

소의 CSRP3, APOBEC2, Caveolin 유전자들의 단일염기다형 분석

  • Bhuiyan, M.S.A. (Division of Animal Science & Resources , Research Center for Transgenic Cloned Pigs, College of Agriculture and Life Sciences, Chungnam National University) ;
  • Yu, S.L. (Division of Animal Science & Resources , Research Center for Transgenic Cloned Pigs, College of Agriculture and Life Sciences, Chungnam National University) ;
  • Kim, K.S. (Department of Animal Science, Chungbuk National University) ;
  • Yoon, D. (Division of Animal Genomics and Bioinformations, National Institute of Animal Science) ;
  • Park, E.W. (Division of Animal Genomics and Bioinformations, National Institute of Animal Science) ;
  • Jeon, J.T. (Division of Animal Science and Technologies, Gyeongsang National University) ;
  • Lee, J.H. (Division of Animal Science & Resources , Research Center for Transgenic Cloned Pigs, College of Agriculture and Life Sciences, Chungnam National University)
  • 삼술부이얀 (충남대학교 농업생명과학대학 동물자원과학부) ;
  • 유성란 (충남대학교 농업생명과학대학 동물자원과학부) ;
  • 김관석 (충북대학교 농업생명환경대학 축산학과) ;
  • 윤두학 (축산과학원 동물유전체과) ;
  • 박응우 (축산과학원 동물유전체과) ;
  • 전진태 (경상대학교 대학원 응용생명과학부) ;
  • 이준헌 (충남대학교 농업생명과학대학 동물자원과학부)
  • Published : 2007.12.31

Abstract

The cysteine and glycine rich protein 3 (CSRP3), apolipoprotein B mRNA editing enzyme catalytic polypeptide‐like 2(APOBEC2) and caveolin (CAV) gene family(CAV1, CAV2, CAV3) have been reported to play important roles for carcass and meat quality traits in pig, mouse, human and cattle. As an initial step, we investigated SNPs in these 5 genes among eight different cattle breeds. Eighteen primer pairs were designed from bovine sequence data of NCBI database to amplify the partial gene fragments. Sequencing results revealed 9 SNPs in the coding regions of three caveolin genes, 1 SNP in CSRP3 and 3 SNPs in APOBEC2 gene. All the identified SNPs were confirmed by PCR-RFLP. Also, 9 more intronic SNPs were detected in these genes. However, all identified mutations in the coding region do not change amino acid sequence. Allelic distributions were significantly different for 5 SNPs in CAV2, CAV3, CSRP3 and APOBEC2 genes among the eight different breeds. These results gave some clues about the polymorphisms of these genes among the cattle breeds and will be useful for further searches for identifying association between these SNPs and meat quality traits in cattle.

CSRP3, APOBEC2, CAV1, CAV2 및 CAV3 유전자들은 포유동물에서 도체와 육질 형질에 중요한 역할을 하는 것으로 보고되고 있다. 따라서, 이 유전자들의 단일염기다형(Single nucleotide poly- morphism; SNP)을 8개의 다른 소의 품종에서 확인한 결과 coding region에서 caveolin family 유전자에서 9개의 SNP, CSRP3유전자에서 1개의 SNP 및 APOBEC2 유전자에서 3개의 SNP가 존재함을 확인하였다. 이 coding region의 SNP들은 PCR-RFLP 방법에 의해 재확인하였으며 이들 유전자의 intronic region에서도 9개의 SNP가 존재함을 확인할 수 있었다. 8개의 다른 품종 소에 각 유전자들의 SNP들을 이용하여 유전자 빈도를 확인한 결과 CAV2, CAV3, CSRP3 및 APOBEC2 유전자의 SNP 중에서 5개가 품종간에서 유의적으로 차이가 있음을 확인할 수 있었다. 이 SNP들은 차후 검증작업을 통하여 육질관련 형질 마커로 이용될 수 있을 것으로 사료된다.

Keywords

References

  1. Barendse, W., Bunch, R. J., Harrison, B. E. and Thomas, M. B. 2006. The growth hormone GH1: c457C>G mutation is associated with relative fat distribution in intra-muscular and rump fat in a large sample of Australian feedlot cattle. Anim. Genet. 37:211-214 https://doi.org/10.1111/j.1365-2052.2006.01432.x
  2. Barendse, W., Bunch, R. J., Thomas, M, Armitage, S., Baud, S. and Donaldson, N. 2004. The TG5 thyroglobulin gene test for a marbling quantitative trait loci evaluated in feedlot cattle. Aust. J. Exp. Agric. 44:669-674 https://doi.org/10.1071/EA02156
  3. Buchanan, F. C., Fitzsimmons, C. J., Van Kessel, A. G., Thue, T. D., Sim, D. C. W. and Schmutz, S. M. 2002. Association of a missense mutation in the bovine leptin gene with carcass fat content and leptin mRNA level. Genet. Sel. Evol. 34:105-116 https://doi.org/10.1186/1297-9686-34-1-105
  4. Casas, E., Shackelford, S. D., Keele, J. W., Kooh-maraie, M, Smith, T. P. L. and Stone, R. T. 2003. Detection of quantitative trait loci for growth and carcass composition in cattle. J. Anim. Sci. 81:2976-2983
  5. Cheong, H. S., Yoon, D., Kim, L. H., Park, B. L., Lee, H. W., Han, C. S., Kim, E. M., Cho, H., Chung, E. R., Cheong, I. and Shin, H. D. 2007. Titin cap (TCAP) polymorphisms associated with marbling score of beef. Meat Sci. 77:257-263 https://doi.org/10.1016/j.meatsci.2007.03.014
  6. Crouse, J., Cross, H. and Seideman, S. 1984. Effects of a grass or grain diet on the quality of three beef muscles. J. Anim. Sci. 58:619-625 https://doi.org/10.2527/jas1984.583619x
  7. Drinkwater, R. D., Li, Y., Lenane, I., Davis, G. P., Shorthose, R. P., Harrison, B. E., Richardson, K., Ferguson, D., Stevenson, R., Renaud, J., Loxton, I., Hawken, R. J., Thomas, M. B., Newman, S., Hetzel, D. J. S. and Barendse, W. 2006. Detecting quantitative trait loci affecting beef tenderness on bovine chromosome 7 near calpastatin and lysyl oxidase. Aust. J. Exp. Agric. 46:159-164 https://doi.org/10.1071/EA05185
  8. Schenkel, F. S., Miller, S. P., Ye, X., Moore, S. S., Nkrumah, J. D., Li, C, Yu, J., Mandell, I. B., Wilton, J. W. and Williams, J. L. 2005. Association of single nucleotide polymorphisms in the leptin gene with carcass and meat quality traits of beef cattle. J. Anim. Sci. 83:2009-2020
  9. Haegeman, A., Williums, J. L., Law, A., Van Zeveren, A. and Peelman, L. J. 2003. Mapping and SNP analysis of bovine candidate genes for meat and carcass quality. Anim. Genet. 34:349-353 https://doi.org/10.1046/j.1365-2052.2003.01008.x
  10. Kong, H. S., Oh, J. D., Lee, J. H., Yoon, D. H., Choi, Y. H, Cho, B. W., Lee, H. K. and Jeon, G. J. 2007. Association of Sequence Variations in DGAT 1 Gene with Economic Traits in Hanwoo (Korea Cattle). Asian-Aust. J. Anim. Sci. 20(6): 817-820 https://doi.org/10.5713/ajas.2007.817
  11. Kumar, S., Tamura, K. and Nei, M. 2004. MEGA 3.1: Integrated software for Molecular Evolutionary Genetics Analysis and sequence alignment. Brief. Bioinfor. 5:150-163 https://doi.org/10.1093/bib/5.2.150
  12. Lay, S. L., Hajduch, E., Lindsay, M. R., Liepvre, X. L., Thiele, C, Ferre, P., Parton, R. G., Kurzchalia, T., Simons, K. and Dugail, I. 2006. Cholesterol induced caveolin targeting to lipid droplets in adipocytes: a role for caveolar endo-cytosis. Traffic. 7:549-561 https://doi.org/10.1111/j.1600-0854.2006.00406.x
  13. Lehnert, S. A., Byrne, K. A., Reverter, A., Natrass, G. S., Greenwood, P. L., Wang, Y. H., Hudson, N. J. and Harper, G. S. 2006. Gene expression profiling of bovine skeletal muscle in response to and during recovery from chronic and severe undernutrition. J. Anim. Sci. 84:3239-3250 https://doi.org/10.2527/jas.2006-192
  14. Liao, W., Hong, S. H., Chan, B. H. J., Rudolph, F. B., Clark, S. C. and Chan, L. 1999. ABOBEC 2, a cardiac and skeletal muscle specific member of the cytidine deaminase super gene family. Biochem. Biophys. Res. Com. 260(2):398-404 https://doi.org/10.1006/bbrc.1999.0925
  15. Li, C, Basarab, J., Snelling, W. M., Benkel, B., Murdoch., B., Hansen, C. and Moore, S. S. 2004. Assessment of positional candidate genes myf5 and igf1 for growth on bovine chromosome 4 in commercial lines of Bos taurus. J. Anim. Sci. 82: 1-7
  16. McNally, E. M., Moreira, E. S., Duggan, D. J., Bonnemann, C. G., Lisanti, M. P., Lidov, H. G. W., Vainzof, M., Hoffman, E. P., Zatz, M. and Kunkel, L. M. 1998. Caveolin 3 in muscular dystrophy. H. Mol. Genet. 7(5):871-877 https://doi.org/10.1093/hmg/7.5.871
  17. Murata, M., Peranen, J., Schreiner, R., Wieland, F., Kurzchalia, T. V. and Simons, K. 1995. VIP21/ caveolin is a cholesterol-binding protein. Proc. Natl. Acad. Sci. 92:10339-10343
  18. Page, B. T., Casas, E., Heaton, M. P., Cullen, N. G., Hyndman, D. L., Morris, C. A., Crowford, A. M., Wheeler, T. L., Koohmaraie, M., Keele, J. W. and Smith, T. P. L. 2002. Evaluation of single nucleotide polymorphisms in CAPN1 for association with meat tenderness in cattle. J. Anim. Sci. 80:3077-3085
  19. Razani, B., Comps, T. P., Wang, X. B., Frank, P. G., Park, D. S., Russel, R. G., Li, M., Tang, B., Jelicks, L. A., Scherer, P. E. and Lisanti, M. P. 2002. Caveolin 1 deficient mice are lean, resistant to diet-induced obesity and show hypertriglyceridemia with adipocyte abnormalities. J. Biol. Chem. 277(10):8635-8647 https://doi.org/10.1074/jbc.M110970200
  20. Schenkel, F. S., Miller, S. P., Ye, X., Moore, S. S., Nkrumah, J. D., Li, C, Yu, J., Mandell, I. B., Wilton, J. W. and Williams, J. L. 2005. Association of single nucleotide polymorphisms in the leptin gene with carcass and meat quality traits of beef cattle. J. Anim. Sci. 83:2009-2020
  21. Scherer, P. E., Okamoto, T., Chun, M., Nishimoto, I., Lodish, H. F. and Lisanti, M. P. 1996. Identification, sequence and expression of Caveolin 2 defines a caveolin gene family. Proc. Natl. Acad. Sci. 93:131-135
  22. Shin, S. C. and Chung, E. R. 2007a. Association of SNP marker in the leptin gene with carcass and meat quality traits in Korean cattle. Asian-Aust. J. Anim. Sci. 20(1): 1-6
  23. Shin, S. C. and Chung, E. R. 2007b. Association of SNP Marker in the Thyroglobulin Gene with carcass and meat quality traits in Korean cattle. Asian-Aust. J. Anim. Sci. 20(2): 172-177
  24. Stinckens, A., Van den Maagdenberg, K., Luyten, T., Georges, M., Smet, S. De. and Buys, N. 2007. The RYR1 g.1843C>T mutation is associated with the effect of the IGF2 intron3 g.3072G>A mutation on muscle hypertrophy. Anim. Genet. 38:67-71 https://doi.org/10.1111/j.1365-2052.2006.01558.x
  25. Thaller, G., Kuhn, C, Winter, A., Ewald, A., Bellmann, O., Wegner, J., Zuhlke, H. and Fries, R. 2003. DGAT1, a new positional and functional candidate gene for intramuscular fat deposition in cattle. Anim. Genet. 34:354-357 https://doi.org/10.1046/j.1365-2052.2003.01011.x
  26. Thompson, J. D., Higgins, D. G. and Gibson, T. J. 1994. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22:4673-4680 https://doi.org/10.1093/nar/22.22.4673
  27. Weikard, R., Kuhn, C, Goldammer, T., Freyer, G. and Schwerin, M. 2005. The bovine PPARGC1A gene: molecular characterization and association of an SNP with variation of milk fat synthesis. Physiol. Genom. 21:1-13 https://doi.org/10.1152/physiolgenomics.00103.2004
  28. White, S. N., Casas, E., Wheeler, T. L., Shackelford, S. D., Koohmaraie, M., Riley, D. G., Chase Jr, C. C., Johnson, D. D., Keele, J. W. and Smith, T. P. L. 2005. A new single nucleotide polymorphisms in CAPN1 extends the current tenderness marker test to include cattle of Bos indicus. Bos taunts and crossbred descent. J. Anim. Sci. 83:2001-2008
  29. Williams, T. M. and Lisanti, M. P. 2004. The caveolin genes: from cell biology to medicine. Annal. Med. 36:584-595 https://doi.org/10.1080/07853890410018899
  30. Zhu, Z., Li, Y., Mo, D., Li, K. and Zhao, S. 2006. Molecular characterization and expression analysis of the porcine caveolin 3 gene. Biochem. Biophys. Res. Com. 346:7-13 https://doi.org/10.1016/j.bbrc.2006.04.132