Flow Separation Control Effects of Blowing Jet on an Airfoil
Ki-Young Lee*, Heong-Seok Chung**, Dong-Hyun Cho** and Myong-Hwan Sohn**

ABSTRACT

An experimental study has been conducted to investigate the flow separation control effects of a blowing jet on an elliptic airfoil at a Reynolds number of 7.84×10^5 based on the chord length. A blowing jet was obtained by pressing a plenum inside the airfoil and ejecting flow out of a thin jet slot that located in leading edge or trailing edge. The experimental results have shown that the blowing jet had an effect of suppressing the flow separation, resulting in the higher suction pressure distribution and higher normal force. The increase in C_{p} was more pronounced at higher incidence, whereas the effectiveness of the blowing jet reduced at lower incidences. The leading edge pulsating blowing with 90° was the most effective in controlling the flow separation than other types of blowing jet configuration tested in this research. Moreover, when the pulsating blowing was applied, the stall angle was postponed about 2°~3°. The continuous and pulsating blowing jet is a direct and effective flow separation control for improving the aerodynamic characteristics and performances of airfoil.

초 록

타원형 단면 에어포일의 블로잉 제트에 의한 유동바리 제어효과에 대한 연구를 레이놀즈 수 Re=7.84×10^5에서 실험적 방법으로 수행하였다. 블로잉 제트는 에어포일 내부의 공기실에 있는 압축공기도 없이 혹은 최전에 위치한 좌른 제트슬롯을 통하여 분출시켰다. 실험결과 블로잉은 날개면 압력회복으로 수직력을 증가시킴으로써 바리 유동을 제어할 수 있음을 보였다. 블로잉에 의한 수직력의 상승은 상대적으로 높은 제트각에서 더욱 효과가 컸으며 낮은 제트각에서는 감소되었다. 현 연구조건에서 수직력을 상승시키는데 가장 효과적인 블로잉 방식은 앞면에서의 90° 방향의 간헐제트이었다. 특히, 간헐제트가 부여된 경우 실제 발생각을 약 2°~3° 저연시킬 수 있었다. 연속제트와 간헐제트 모두 에어포일의 공력특성과 성능을 향상시킴으로써 유동바리 제어에 적절적이고 유효한 방법임을 입증하였다.

Key Words : Blowing Jet(블로잉 제트), Flow Separation Control(유동바리 제어), Aerodynamic Characteristics(공력특성), Blowing Effectiveness(블로잉 효과도)
가시키기 위해서는 날개 시외대비 두께비(\(t/c\))를 줄여 고속의 전진 비행속도를 얻을 수 있다. 하지만 \(t/c\)가 작은 날개일 때 에어포일의 앞면절층의 가능성이 높아 낮은 마하수에서의 최대항력 능력을 제한하며, 후퇴면의 블레이드 성능에 부정적인 영향을 줄 수 있기 때문에 일반적인 로터 블레이드 에어포일은 \(t/c\)가 비교적 크면서 큰 캐버를 부가하는 방법이 사용되고 있다[1]. 세들에의 경우 클릭시 유동박리에 의한 실속을 방지하면서, 최대한의 항력을 발생시킬 수 있도록 것을 최대한으로 피서 날개면적과 캐버를 최대로 증가시켜 높은 반응각에서도 유동박리가 일어나지 않도록 하는 것이 가장 원리라 할 수 있다[2].

형체의 비행속도를 증가시키기 위해서는 날개의 에어포일의 형태를 유지하면서 앞면절층을 방지할 수 있는 방법으로 와류발생기(\textit{vortex generator}) 혹은 경계층 홍입(\textit{boundary layer suction}) 등을 사용하여 블러리경계층의 비정상 섬동\(\textit{unstable disturbances}\)의 자연적인 성장을 억제함으로써 에어포일의 공력성능 향상을 도모하는 방법이 제시되고 있다[3]. 하지만 홍입은 꼭, 튜브 등으로 인한 측면의 증가와 복잡성으로 실제 헬기 로터에 적용되지 못하고 있다. 최근에는 무질량유동 인조제트(\textit{zero-mass flow synthetic jet})가 에어포일의 양력 증가와 함께 항력을 감소시키는 로터 성능을 향상시키는 도구로 연구되고 있다[4, 5]. 이외에도 3~12 kV의 높은 전압으로 형성된 플라즈마에 의한 전자기적으로 유동박리를 제거시키는 플라즈마 구동방법도 제시되고 있다[6, 7]. 그러나 이러한 유동체어 방법인 실험이 실험실에서 매우 유용하다는 하지만 실제 비행 영역에서의 유동성은 아직 입증하지 못하고 있다. 국내에서도 다양한 방법을 사용한 실속제어 연구가 수행되고 있으나 대부분 수치모사에 의한 연구로 제한되어 있어 실제 날개에 대한 적용은 시도되지 못하고 있다[8, 9].

따라서 본 연구는 실제 날개에 적용 가능한 방법으로 엔진 앞쪽에서 추출할 수 있는 압축공기를 사용한 보강유의 에어포일의 역학 효과를 연구하였다. 특히 연속체어 및 간격체어와 같은 보강유 방식과 보강유 위치에 따른 에어포일의 공력특성 변화를 날개면 압력측정 및 후류전압 측정에 의한 정량적 방법과 PIV에 의한 유동형태 분석의 정성적 방법을 동시에 수행함으로써 보강유에 의한 날개 주위의 유동형태 변화가 공력특성에 어떻게 영향을 미치고 있는지를 중점적으로 규명하였다.

2.1 실험모델 및 유동체어 구동기

본 연구에 사용된 에어포일 모델은 Fig. 1a와 같이 시위선과 종상스 пен에 대하여 상하좌우가 대칭인 타원형 단면의 이차원 에어포일로 장축과 단축의 비는 8:1이다. 날개의 시위 및 스 пен은 각각 400 mm, 1,500 mm, 최대 두께는 시위의 12.5%인 50 mm이다. Fig. 1a의 날개 앞면에 표시된 점들은 날개면에서의 압력장치 측정하기 위한 총 45개 압력공들의 위치이다.

에어포일 모델에는 날개 앞서의 로터 위 유동 박리 제어를 위한 폭 1 mm, 길이 100 mm의 제트슬롯 블록이 날개 중앙에 위치하고 있다(Fig. 1b, c). 제트슬롯 블록은 탈 부착이 가능하도록 제작되었으며, 제트의 분사 방향을 0°, 45°, 90°로 조정할 수 있다.

![Fig. 1. Experimental airfoil model and jet slot block](image1.png)

![Fig. 2. Compressed air jet actuator](image2.png)
-45°, 90°의 각으로 조절할 수 있다. 본 연구에서는 앞전에서는 +45°와 +90° (Fig. 1b) 그리고 뒷전에서는 -45° (Fig. 1c)의 세 방향에 대하여 수행하였다. 제트의 분출은 압축공기를 슬롯에 노이즈를 방출하는 방법을 이용하였다. Fig. 2는 본 연구에 사용된 제트 구동기이다.

2.2 실험 방법 및 실험조건

모델 날개의 공력특성 해석을 위하여 날개면 압력장과 날개 후면에서의 전압장을 측정하였다. 날개면에서의 정압력 측정은 날개면의 시위방향으로 설치한 45개의 압력센서들에 의해 측정되었다. 압력공액에 감지된 압력 값들은 날개 전에 내장된 48 채널의 압력측정 ESP (Electronically Scanned Pressure) 모듈 (측정범위 ±1psi)과 PSI 8400 시스템에 의해 측정하여 DAS (Data Acquisition System) 컴퓨터에 의해 처리하였다. PSI 8400 시스템은 0.05%의 오차범위 내에서 측 정 가능하다. 측정된 날개면 압력분포로부터 시 위방향으로 수치 적분하여 날개면에서의 수직력 계수 (C_L)를 계산하였다. 날개의 수직력계수 (C_L)는 날개 상부에서의 자유유동의 전압과 날개 후면에서의 전압의 측정에 의한 운동량 결손으로 계산하였다. 후면에서의 전압 측정은 21개 port의 wake survey rake를 사용하였다 (Fig. 3). 측정 포 트의 직경은 2.2 mm이며, 측정 포트간의 간격은 10 mm이다. 측정위치는 폭동의 정점을 도달할 수 있는 충분히 하류에서 날개 시위각이 15° ($x/c = 1$)에서 날개 중심 스펜으로부터 $y/c = ±0.8$까지 측정하였다 [10].

실험 모델의 실태특성 및 실태해어에 대한 정 성적 분석은 PIV에 의한 유동형태 측정에 의해 수행하였다. PIV 측정 시스템은 레이저와 CCD 카메라 그리고 시스템간의 통기화와 실험제어, 데이터의 획득 및 후처리를 위한 소프트웨어 (LaVision GmbH의 DaVis Flow Master)를 탑재한 PC로 구성되어 있다. 레이저는 이중 필드 Nd:YAG 레이저 Vlite-200을 사용하였으며, 필 스네어지는 200 mJ이고 repetition rate가 15 Hz이다. CCD카메라는 2048×2048 화소의 Kodak ES/4.0 12비트 디지털카메라를 사용하였다. 유동 입자는 DEHS (Di-Ethyl- Hexyl-Sebacat; C₉H₁₄O₄)로서 Laskin 노즐형의 에어로졸 발생기를 사용하여 퍼드 내에 균일하게 분포시켰다. 실험속도 (U_w)는 30 m/s로 날개 시위각을 기준으로 한 1.84×10⁻⁶로 소형 무인기의 비행조건과 유사한 크기 ($Re_{W}=10^{2}$~10^{4})이다. 반응각은 0°부터 20°까지로 1°씩 증가하면서 실시하였다. 볼로잉 제트의 평균유속 (V_{rms})은 자유유동의 2배인 60 m/s이며, 이는 2%의 제트 운동량계수 ($C_L=p_b V_{rms}^2/ρ u_w c$)에 해당한다. 제트 주파수 ($f$)는 본 실험에서 사용하는 슬롯에 노이즈를 빠르게 작동된 주파수 범위인 0~40Hz를 사용하였다. 본 연구에서는 0 Hz의 연속제트와 40Hz의 간헐제트 두 가지 방식을 사용하였다. 이는 무차원체수 즉, $f/2c/Re_{W}$가 각 0과 1.6의 크기이며, 50% 개폐사이클 (half-on and half-off)로 작동하였다. 볼로잉 제트각도는 앞전 볼로 잉은 Fig. 1에 정의된 +45°와 90°에서, 그리고 뒷 전 볼로잉은 -45°에 대하여 수행하였다. 실험조건 들은 TCS (Tunnel Control System)와 날개구동시스템에 연동된 전용 PC에 의해 제어하였다. 실험은 측정부의 크기가 2.45 m(H) × 3.5 m(W) × 8.7 m(L)인 공군사관학교의 중형에어로졸공용을 사용하여 수행하였다.

본 논문에 제시되는 자료들은 볼로잉 제트의 형태와 위치 그리고 제트 각도에 따른 날개면 압력계수와 후면에서의 소드슈프 과 PIV에 의해 획득한 유동형태들을 보여주고 있다. 그림들에서 NB는 볼로잉을 가지지 않은 경우를, LE 및 TE는 볼로잉 슬롯의 위치로 각각 앞전과 뒷전을 의미하며, CB와 PB는 볼로잉 방식으로 각각 연속제트와 간헐제트를 가리킨다. 그리고 숫자로 표현된 45, 90 및 -45는 Fig. 1에 정의된 볼로잉 제트 각도이다. 예로, LE_90PB는 앞전에서 90° 각도로 분사되는 간헐제트를 의미한다. LE_45 및 TE_45의 경우에는 제트 슬롯이 앞전과 뒷전으로부터 각각 0.4%c에 위치하며, 날개표면보다는 90°의 위치각을 이룬다. 반면 LE_90의 제트슬롯은 앞전으로부터 1.5%c에 위치하며 날개표면과 60°의 위치각을 가지고 있다.

III. 실험결과 및 분석

3.1 타원형 에어포일의 공력특성

Fig. 4는 각 반응각에서 중앙 스펜에서의 시위 방향으로 측정한 날개면 압력계수이다. 본 논문
에 제시된 날개면 압력 및 후류 속도장은 150회
측정값의 평균값들이다. 낮은 범위각인 \(\alpha=8^\circ\)에서는 대부분의 다른 에어로졸들과 유사하게 앞전부
근에서 국소피크치(\(C_{p,\text{max}}=2.16\) at \(x/c=0.047\))를 갖고 시위에 따라 흡입압력계수가 감소하는 전향
적인 압력분포를 갖는다. 하지만 \(\alpha=10^\circ\sim12^\circ\)의 경우는 특이한 압력계수 곡선을 보인다. 즉, 앞전
으로부터 약 25\%c에 이르기까지 피크치의 변화가 거의 없는 완만한 압력계수 분포(\(\alpha=10^\circ\),
\(C_{p,\text{max}}=1.55\) at \(x/c=0.125\))가 유지되다가 이후 서서히 감소하는 압력곡선을 보인다. 이는 범위각
11\%부터 앞전부근에서 관찰되는 박리비블(약
15\%c의 크기)로 인한 저속 영역에 기인한 것으로 동일 조건에서 PIV로 측정한 유동형태에서 확인할 수 있다. PIV 유동형태에서 후속하였지만 범위각 14\%이상에서는 뒷전으로부터 확장되는 윗
전바리 영역과 앞전바리 영역이 결합되어 시위전
체 크리로 박리영역이 확장된다(Fig. 10a, Fig. 12a). 따라서 범위각 14\%이상에서는 전향적인 실
속특성의 앞전에서부터 봉괴된 압력곡선을 보인다.
다만, 범위각 10\%\sim12\% 영역에서는 앞전바리
비블이 20\%c\sim25\%c에서 재부착되기 때문에 수
적력이 저하되지 않는다. 이와 같은 압력곡선은
본 연구모델보다 두꺼운 \((t/c)_{\text{max}}=0.2\)에 대한 타

Fig. 5는 시위 크기 후방에서 측정한 날개 후
류의 속도분포(속도결손)이다. 날개면에서의 압력
분포와 같이 범위각 증가와 함께 속도결손이 증
가한다. 특히 날개가 완전 난류바리에 진입하는
범위각 14\% 이상에서 속도결손이 현저하게 증가
한다.

3.2 블로戒指에 의한 공력특성 및 유동형태
에의 영향

Fig. 6과 Fig. 7은 실속전 범위각인 \(\alpha=8^\circ\)에서
블로잉의 위치 및 방식 그리고 블로잉 각도에 따
른 날개면 압력 특성과 후류속도 변화를 보인
것이다. 그림에서 극한값을 감소시키기 위하여
LE_45에서의 자료는 본 논문에 제시하지 않았다.
Fig. 6은 앞전에서의 블로잉에 의해 가속된 경제
중 유동에 의해 국소 피크치가 증가함을 보여주
고 있다. LE_90_CB의 국소피크치(\(C_{p,\text{max}}=2.93,\)
\(x/c=0.058\))의 증가가 두드러진다. 뒷전에서의 블
로잉은 날개면 압력장에 거의 영향을 주지 않는
다. Fig. 7에서와 같이 실속전 범위각에서의 블로

Fig. 5. Wake profile with angles of attack

Fig. 6. Effect of blowing jet on the \(C_p\)
distribution at \(\alpha=8^\circ\)

Fig. 7. Effect of blowing jet on the wake
profile at \(\alpha=8^\circ\)
잉은 불로임 위치와 방식에 관계없이 속도결손 크기에의 영향은 크지 않다. 다만 LE-45_CB의 경우에는 최대속도결손 위치를 낮게 하방으로 이동시키는 효과를 보인다.

Fig. 8과 Fig. 9 그리고 Fig. 10은 모델별개의 실속방은각 근처의 $a=12^\circ$에서 불로임에 의한 유동형태와 압력계수 및 후류 속도분포의 변화를 비교하여 보인 것이다. 제시된 모든 속도 벡터장들은 주어진 유동조건에서 측정한 순간 속도장을 30회 평균한 평균 속도장을이다. Fig. 8에서 컬러코 드는 동속도를 나타낸 것이다. 실속방은각 근처 에서는 뒷전에서의 박리영역이 앞전으로 확장되 어 전 날개 시기에 겸쳐 유동이 바뀌는 유동형 태를 보인다(Fig. 8a). 이러한 유동형태는 앞전에 서의 불로임에 의해 상당히 약화된 뒷전박리 형 태의 유동형태로 변화된다(Fig. 8b). 뒷전에서의 불로임은 앞전에서의 불로임에 비해 그 효과가 크지는 않으나 유동박리 영역을 축소시킨다. 이와 같은 유동형태의 변화는 Fig. 9의 날개면 압력계수 분포의 변화로 나타난다. 즉, 불로임이 없는 경우에는 앞전에서의 완만한 압력분포 곡선 ($C_{p_{\text{max}}}$=-1.34)이 앞전 불로임(LE-90_CB)에 의해 낙하로운 곡소폭곡($C_{p_{\text{max}}}$=-2.96, $x/c=0.058$)을 갖는 압력분포 곡선으로 변환된다. 뒷전 불로임 (LE-45)도 유동박리 영역의 축소(Fig. 8c)로 앞전 부근에서의 흩어질력 회복에 기여함을 알 수 있다. 아울러 앞전불로임은 그 크기가 미미하기는 하지만 후류에서의 속도결손을 감소시키는데 비해, 뒷전 불로임은 속도결손을 증가시킨다(Fig. 10).

Fig. 11은 실속이후의 방출각인 $a=16^\circ$에서의 불로임에 따른 유동형태의 변화를 제시한 것이 다. 불로임이 없는 경우에는 박리영역이 $a=12^\circ$에 비하여 시리즈기로 확장된 완전한 실속상태의 유 동형태를 보인다(Fig. 11a). 이와같이 방출 각과 함께 확장된 박리유동 영역은 앞전에서의 불로임(Fig. 11b)에 의해 효과적으로 축소됨을 관찰할 수 있다. 뒷전 불로임의 경우에도 앞전 불로임보다는 작지만 박리영역을 축소시키고 있다 (Fig. 11c).

앞전 혹은 뒷전에서의 불로임에 의해 현저하게 축소된 박리영역은 에어로일의 공력특성 향상으
로 나타난다. 블로잉이 없는 경우 외전실속 특성은 나타내는 흡입압력 곡선이 앞면 블로잉에 의해 현저하게 회복될 보여주고 있다(Fig. 12). 특히, LE_90_CB가 가장 효과적으로 외전에서의 흡입압력을 회복시킬 수 있다 ($C_{p, max} = -0.68 \rightarrow -2.74$). 그러나 앞면에서의 연속계트(LE_90_CB)는 낙자로운 파크치 이후에 시위와 함께 흡입압력이 급격히 감소되어 부분적구배를 유발할 수 있다. 이에 비하여 앞면에서의 간헐계트(LE_90_PB)는 국소파크치가 다르 낮지만 ($C_{p, max} = -1.51$) 시위증가와 함께 완만하게 감소하는 압력곡선 특성을 보인다. 뒷면 블로잉의 경우에도 앞면에서 뿐 아니라 뒷면에서의 압력회복도 기여할을 알 수 있다. 블로잉에 의한 낮개 후류에서의 속도 결손은 앞면 블로잉과 뒷면 블로잉 모두 그 크기가 미미하지만 낮개면에서의 압력회복과 더불어 속도결손도 증가됨을 보여주고 있다 (Fig. 13).

각 방음각에서 측정한 낮개 앞면과 뒷면에서의 압력을 시위방향으로 정하면 구한 수직적 계수를 블로잉 위치, 각도 및 블로잉 방식에 따른 영향을 Fig. 14에 비교하여 보였다. Table 1은 특성 방음각에서의 수직적계수를 앞면 블로잉보다 뒷면 블로잉에 대하여 제시한 것이다. Fig. 14에서와 같이 실질적 전후 방음각에 따라 블로잉 효과가 상이함을 알 수 있다. 즉, 실질적 방음각의 경우 앞면 블로잉은 수직적 향상 효과가 미미하기나 오히려 감소하는 비례하여 뒷면에서의 연속 블로잉은 제트 플레어효과로 인하여 3.8% ~ 9.5%의 수직적 상승을 보여준다. 반면에 실질적 방음각 12° 이후의 방음각에서는 앞면에서의 블로잉에 의한 수직적 상승효과가 크다. 특히, 연속 블로잉보다는 간헐제트 블로잉(LE_90_PB)이 비교적 높은 방음각이 18°에 이르기까지 높은 수직적 상승효과를 보인다. LE_90_PB의 경우는 낮개면에 약 60° 파크치각의 블로잉으로 호흡방향 외류를 발생시키는 경계층의 혼합을 더욱 증가시키는 효과로 생각된다. 이는 블로잉 제트의 방향이 제트 슬롯 주변 유동방향과 일치하는 경우에 가장 좋은 유동제어 특성을 보고한 수직결과를 잘 일치한다[8, 9]. 아울러 연속제트가 낮은 운동

![Fig. 12. Effect of blowing jet on the C_p distribution at $\alpha=16^\circ$](image1)

![Fig. 13. Effect of blowing jet on the wake profile at $\alpha=16^\circ$](image2)

Fig. 11. Effect of blowing jet on the flow patterns at $\alpha=16^\circ$
| Table 1. Typical values of C_n with jet blowing type and location |
|------------------------|------------------------|------------------------|
| α | NB | LE_90_CB | PB | TE-45_CB | PB |
| 4 | 0.42 | 0.40(-4.8) | 0.40(-4.8) | 0.46(9.5) | 0.41(-2.4) |
| 8 | 0.78 | 0.79(1.3) | 0.75(-3.8) | 0.81(3.8) | 0.77(-1.3) |
| 12 | 0.85 | 0.87(2.4) | 0.84(-1.2) | 0.89(4.7) | 0.86(1.2) |
| 14 | 0.81 | 0.84(3.7) | 0.82(1.2) | 0.85(4.9) | 0.83(2.5) |
| 16 | 0.64 | 0.74(15.6) | 0.75(17.2) | 0.68(6.3) | 0.68(6.3) |
| 18 | 0.59 | 0.64(8.5) | 0.67(13.6) | 0.64(8.5) | 0.62(5.1) |

Fig. 14. Effects of jet blowing on the C_n

Fig. 15. Comparison of blowing effectiveness for various type of blowing jet

Fig. 16. Effects of blowing jet on the C_n

자유흡률과 블로잉제트의 운동량비인 제트운동량 계수(C_r)에 대한 수직력상승비로 정의($E_p=\Delta C_r/C$)하였다[13]. 따라서 $E_p>1$인 경우에 블로잉이 수직력 상승에 효과적이고 의미한다. Fig. 15에 제시된 바와 같이 블로잉은 실측된 방향각 12° 이하에서는 앞뒤에서의 연속제트 블로잉이 외어는 $E_p<1$로써 수직력 향상에 효과적이지 못함을 알 수 있다. 하지만 앞뒤 방향각에서는 블로잉 위치에 관계없이 대부분 $E_p>1$의 값을 보여 수직력 상승에 효과적이음을 알 수 있다. 특히, LE_90_PB의 경우 비교적 높은 방향각에서도 $E_p=4.24-6.23$으로 효과적으로 수직력 상승에 기여함을 보여주고 있다. 앞뒤 블로잉은 실측방향 각 전후에 블로잉 효과가 큰 차이를 보이는데 반해 앞뒤에서의 연속 블로잉은 전 방향각에서 비교적 일정한 블로잉 효과도($E_p=1.92-3.85$)를 보이고 있어 이는 착륙시 사용되는 플랩을 대체하거나 성능을 보완할 수 있는 방안으로 고려할 수 있다[13, 14]. 본 논문에서는 보이지 않았지만 동일한 앞뒤 블로잉의 경우에도 블로잉 각도(제트 피치각)에 따라서 블로잉 효과도가 큰 차이를 보여 제트 슬롯의 위치와 제트 피치각에 블로잉 효과도에 주요 변수임을 알 수 있다.

Fig. 16은 날개 후류에서의 속도결손으로부터 계산된 향상항력에 여러 가지 블로잉 방식에 대해 비교하여 보였다. 그림에서 앞뒤 블로잉을 제외하고는 대부분의 방향각 영역에서 블로잉이 항력 저감시키는 효과를 보여준다. 하지만 앞뒤 블로잉의 경우 낮은 방향각에서는 항력을 감소시키나 방향각 증가와 함께 항력이 급격히 증가하여 방향각 10도 이상에서 블로잉이 없는 경우에 비하여 약 30%의 항력이 증가한다.

IV. 요약 및 결론

타원형 단면의 에어포임에 대하여 블로잉 방식과 블로잉 위치 및 블로잉 각도에 따른 공력특이.
성 변화를 날개면 압력측정 및 후류전압 측정 그리고 PIV에 의한 유동형태 분석 연구를 통하여 다음의 결과를 얻었다.

(1) 연속체트 및 간헐체트 모두 낮은 받음각 보다는 상대적으로 높은 받음각에서의 공력특성 향상에 효과적이다.

(2) 유동바리 액체를 통한 실속지연효과는 앞전에서 제트흡입이 피치각을 갖는 간헐체트 방식이 가장 효과적이었다.

(3) 앞전에서의 간헐체트 방식은 실속 받음각을 2°~3° 차단시킬 수 있었다.

(4) 실속전 받음각에서의 불로임은 불로임 효과가 저하되어 공력특성 향상에 기여하지 못하였다.

후 기

본 논문은 2006년도 정부재원(교육인적자원부 학술연구조생사업비)으로 학술진흥재단의 지원을 받아 연구되었습니다(KRF-2006-D00360).

참고문헌

