DOI QR코드

DOI QR Code

Development of a numerical method for rotor aerodynamics applications

로터 공력해석을 위한 수치기법 개발

  • 김해동 (세종대학교 기계항공우주공학부)
  • Published : 2007.08.31

Abstract

A numerical method for accurate simulations of rotor aerodynamics is proposed. The numerical diffusion in the typically coarse grids away from the rotor blades is improved by implying a fourth-order of interpolation of local characteristic variables of the flow in the reconstruction stage of MUSCL approach in the framework of a finite volume formulation. In addition, different slope limiters are applied to the different characteristic fields, such as compressive limiters to linear characteristic fields to reduce the numerical dissipation whereas, diffusive limiters to nonlinear characteristic fields to increase numerical stability. Various exemplary problems related to the rotor aerodynamics applications are tested and the numerical results show a significant improvement in wake capturing capability. However, rotor aeroacoustic calculations show no meaningful difference over traditional MUSCL approach.

로터 공기역학 모사를 위한 수치해석 기법이 제안되었다. 국부적인 유동특성변수를 4차 정확도 내삽의 MUSCL 접근방법을 유한체적 공식에 적용시킴으로써 로터 블레이드로 부터 멀리 떨어져 성긴 격자영역에서의 비 물리적인 수치 확산을 개선시켰다. 또한, 유동특성변수에 따라 각각 다른 제한자를 적용함으로써 수치적인 소산작용을 억제하고 수치적 안정성을 높였다. 대표적인 로터 공기역학 응용문제에 적용한 결과 후류포획성능이 크게 개선됨을 확인하였으나 공력소음계산 결과는 전통적인 MUSCL 기법에 비교하여 큰 개선점은 없었다.

Keywords

References

  1. Srinivasan, G. R, Baeder, J. D., Obayashi, S., and McCrosky, W. J., 'Flowfield of a Lifting Rotor in Hover: A Navier-Stokes Simulation', AIAA Journal, Vol. 30, No. 10, 1992, pp. 2371-2378 https://doi.org/10.2514/3.11236
  2. Caradona, F. X., and Tung, C. 'Experimental and Analytical Studies of a Model Helicopter Rotor in Hover', NASA TM 81232, 1981
  3. Kitaplioglu, C, and Caradona, F. X., 'A study of Blade-Vortex Interaction Aeroacousticc Utilizing an Independently Generated Vortex', AGARD Fluid Dynamics Pannel Symposium on Aerodynamics and Aeroacoustics of Rotorcraft, Berlin, Germany, 1994
  4. Roe, P. L., 'Approximate Riemann Solvers, Parameter Vectors and Difference Schemes', Journal of Computational Physics, Vol. 43, No.2, 1981, pp. 357-372 https://doi.org/10.1016/0021-9991(81)90128-5
  5. Sweby, P. K., 'High Resolution Schemes Using Flux Limiters for Hyperbolic Conservation Laws', SIAM Journal on Numerical Analysis, Vol. 21, No.5, 1984, pp. 995-1011 https://doi.org/10.1137/0721062
  6. Koren, B., 'Upwind Schemes, Multigrid and Defect Correction for the Steady Navier-Stokes Equations', Proceedings of the International Conference on Numerical Methods in Fluid Dynamics, edited by D. L. Dwoyer, M. Y. Hussani, and R. G. Voigt, Springer-Verlag, Berlin, 1989
  7. Yamamoto, S., and Daiguji, S., 'Higher-Order Accurate Upwind Schemes for Solving the Compressible Euler and Navier Stokes Equations', Computers and Fluids, Vol. 22, 1993, pp.259-270 https://doi.org/10.1016/0045-7930(93)90058-H
  8. Hirsch, C, 'Numerical Computation of Internal and External Flows, Volume 2', Wiley, New York, 1987, pp. 150-157
  9. Kim, H., 'Computational Techniques for Blade Vortex Interaction Prediction', Ph. D. Dissertation, School of Aeronautics and Astronautics, Purdue University, West Lafayette, IN, Aug. 2001
  10. Scully, M. P., 'Computation of Helicopter Rotor Wake Geometry and Its Influence on Rotor Harmonic Airloads', ASRL TR 178-1, Massachusetts Institute of Technology, 1975
  11. Srinivasan, G. R., Raghavan, V., and Duque, E. P. N., 'Flowfield Analysis fo Modem Helicopter Rotors in Hover by Navier-Stokes Method, International Technical Specialists Meeting on Rotorcraft Acoustics and Rotor Fluid Dynamics, Philadelphia, PA., 1991
  12. Wang, G., Sankar, L. N., and Tadghighi, H., 'Prediction of Rotorcraft Noise with a Low-Dispersion Finite Volume Scheme', AIAA Journal, Vol. 38, No.3, 2000, pp. 395-401 https://doi.org/10.2514/2.997