Developmental and Environmental Sources of Variation on Annual Growth Increments of Ascophyllum nodosum (Phaeophyceae)

  • Eckersley, Lindsay K. (Department of Biology, St. Francis Xavier University) ;
  • Garbary, David J. (Department of Biology, St. Francis Xavier University)
  • Published : 2007.06.01


Annual growth segments of Ascophyllum nodosum (L.) Le Jolis (Fucales, Fucaceae) are denoted by air bladders that form each spring. By examining annual growth segments, it may be possible to infer information about the physical conditions during the growth period; however, it is uncertain whether the annual segments will expand in size after the initial growth. We examined A. nodosum segments from three populations in Nova Scotia, and statistically evaluated whether the annual growth (length, mass, and maximum diameter) of segments was independent of the age of the frond, whether the segments increased in size after the initial growth, and whether the segment lengths were correlated with mean water temperatures and mean air temperatures when the segments were formed. We found that the growth in length of A. nodosum is dependent on the age of the frond, but frond age explained less than 12 % of the overall variation in length. However, the mass and maximum diameter of segments were independent of the age of the frond. Differences occurred between the lengths of segments formed in different years, but there was no significant correlation with regional mean water or air temperatures. This study indicates that the length of A. nodosum segments may be an indicator of the annual physical characteristics of a site, but future studies are needed to identify which factors have the strongest influence on growth patterns.


  1. Aberg P. 1992. A demographic study of two populations of the seaweed Ascophyllum nodosum. Ecology 73: 1473-1487
  2. Adey W.H. and Hayek L.C. 2005. The biogeographic structure of the western North Atlantic rocky intertidal. Crypt. Algol. 26: 35-66
  3. Bertness M.D., Leonard G.H., Levine J.M., Schmidt P.R. and Ingraham A.O. 1999. Testing the relative contribution of positive and negative interactions in rocky intertidal communities. Ecology 80: 2711-2726[2711:TTRCOP]2.0.CO;2
  4. Brackenbury A.M, Kang, E.J. and Garbary D.J. 2006. Air pressure regulation in air bladders of Ascophyllum nodosum (Fucales, Phaeophyceae). Algae 21: 245-251
  5. Clarke K.R. and Gorley R.N. 2006. PRIMER v6: User Manual/Tutorial. PRIMER-E Ltd. Plymouth, U.K
  6. Clarke K.R., Somerfield P.J. and Chapman M.G. 2006. On resemblance measures for ecological studies, including taxonomic dissimilarities and a zero-adjusted Bray-Curtis coefficient for denuded assemblages. J. Exp. Mar. Biol. Ecol, 330: 55-80
  7. Cousens R. 1982. The effect of exposure to wave action on the morphology and pigmentation of Ascophyllum nodosum (L.) Le Jolis in south-eastern Canada. Bot. Mar. 25: 191-195
  8. Cousens R. 1985. Frond size distributions and the effects of the algal canopy on the behaviour of Ascophyllum nodosum (L.) Le Jolis, J. Exp. Mar. Biol. Ecol. 92: 231-249
  9. Cousens R. 1986. Quantitative reproduction and reproductive effort by stands of the brown alga Ascophyllum nodosum (L.) Le Jolis in south-eastern Canada. Est. Coast. Shelf Sci. 22: 495-507
  10. David H.M. 1943. Studies in the autecology of Ascophyllum nodosum Le Jol. J. Ecol. 31: 178-198
  11. Deckert R.J. and Garbary D.J. 2005. Ascophyllum and its symbionts VI. Microscopic characterization of the Ascophyllum nodosum (Phaeophyceae), Mycophycias ascophylli (Ascomycetes) symbiotum. Algae 20: 225-232
  12. De Wreede R.E. 1984. Growth and age class distribution of Pterygophora californica (Phaeophyta). Mar. Ecol. Prog. Ser. 19: 93-100
  13. Garbary D.J., Brackenbury A., McLean A.M. and Morrison D. 2006. Structure and development of air bladders in Fucus and Ascophyllum (Fucales, Phaeophyceae). Phycologia 45: 557-566
  14. Garbary D.J. and Deckert, R.J. 2001. Three part harmony Ascophyllum and its symbionts. In: Seckbach J (ed.), Symbiosis: mechanisms and model systems. Kluwer, Dortrecht, The Netherlands. pp. 309-321
  15. Howell D.C. 1992. Statistical methods for psychology. Duxbury, Pacific Grove, CA, USA
  16. Kain J.M. 1963. Aspects of the biology of Laminaria hyperborea. II. Age, weight and length. J. Mar. Biol. Ass. U.K. 43: 129-151
  17. Kain J.M. 1979. A view of the genus Laminaria. Ann. Rev. Oceanogr. Mar. Biol. 17: 101-161
  18. Keser M. and Larson B.R. 1984. Colonization and growth of Ascophyllum nodosum (Phaeophyta) in Maine. J. Phycol. 20: 83-87
  19. Keser M., Swenarton J.T. and Foertch J.F. 2005. Effects of thermal input and climate change on growth of Ascophyllum nodosum (Fucales, Phaeophyceae) in eastern Long Island Sound (USA). J. Sea Res. 54: 211-220
  20. Kraberg A. and Norton T.A. 2007. Effect of epiphytism on reproductive and vegetative lateral formation in the brown, intertidal seaweed, Ascophyllum nodosum (Phaeophyceae). Phycol. Res. 55: 17-24
  21. Lazo L., Markham J.H. and Chapman A.R.O. 1994. Herbivory and harvesting: effects on sexual recruitment and vegetative modules of Ascophyllum nodosum. Ophelia 40: 95-113
  22. Li W.K.W., Harrison W.G. and Head E.J.H. 2006. Coherent assembly of phytoplankton communities in diverse temperature ocean ecosystems. Proc. R. Soc. Ser. B, 273: 1953-1960
  23. Lobban C.S. and Harrison P.J. 1994. Seaweed ecology and physiology. Cambridge University Press, Cambridge, UK
  24. McLean A.M. 2007. Morphological trends in the brown alga Ascophyllum nodosum from Nova Scotia, Canada and Lochmaddy Scotland. BSc Honours Thesis, St. Francis Xavier University, Antigonish, Nova Scotia, Canada
  25. Moran M.D. 2003. Arguments for rejecting the sequential Bonferroni in ecological studies. Oikos 100: 403-405
  26. Moss B. 1971. Meristems and morphogenesis in Ascophyllum nodosum ecad mackaii (Cotton). Br. Phycol. J. 6: 187-193
  27. Novaczek I. 1981. Stipe growth rings in Ecklonia radiata (C.Ag.) I.Ag. (Laminariales). Br. Phycol. J. 16: 363-371
  28. Pavia H., Toth G. and Aberg P. 1999. Trade-offs between phlorotannin production and annual growth in natural populations of the brown seaweed Ascophyllum nodosum. J. Ecol. 87: 761-771
  29. Schweingruber F.H. 2007. Wood structure and environment. Springer, Berlin
  30. Sharp G. 1987. Ascophyllum nodosum and its harvesting in Eastern Canada. In: Case studies of seven commercial seaweed resources. FAO Tech. Rep. 281: 3-46
  31. Stengel D.B. and Dring M.J. 1997. Morphology and in situ growth rates of plants of Ascophyllum nodosum (Phaeophyta) from different shore levels and responses of plants to vertical transplantation. Eur. J. Phycol. 32: 193-202
  32. Stromgren T. 1977. Apical length growth of five intertidal species of Fucales in relation to irradiance. Sarsia 63: 39-47
  33. Stromgren T. 1983. Temperature-length growth strategies in the littoral alga Ascophyllum nodosum (L). Limnol. Oceanogr. 28: 516-521
  34. Vadas R.L. and Wright W.A. 1986. Recruitment, growth and management of Aseophyllum nodosum. Aetas II Congr. Algas Mar. Chilenas. pp. 101-113
  35. Zar, J.H. 1999. Biostatistical Analysis. 4th ed. Prentice-Hall, Inc. Upper Saddle River, NJ

Cited by

  1. Epidermal shedding inAscophyllum nodosum(Phaeophyceae): seasonality, productivity and relationship to harvesting vol.54, pp.6, 2015,
  3. Ascophyllumand its symbionts. X. Ultrastructure of the interaction betweenA. nodosum(Phaeophyceae) andMycophycias ascophylli(Ascomycetes) vol.86, pp.2, 2008,
  4. Effects of land-based fish farm effluent on the morphology and growth of Ascophyllum nodosum (Fucales, Phaeophyceae) in southwestern Nova Scotia vol.26, pp.3, 2011,
  5. Regional consistency of intertidal elevation as a mediator of seaweed canopy effects on benthic species richness, diversity, and composition vol.491, 2013,
  6. Response to Ugarte et al.: Ascophyllum (Phaeophyceae) annually contributes over 100% of its vegetative biomass to detritus vol.56, pp.1, 2017,