Using oscillatory shear to probe the effects of bidispersity in inverse ferrofluids

  • Ekwebelam, C.C. (School of Chemical and Biomolecular Engineering, University of Sydney) ;
  • See, H. (School of Chemical and Biomolecular Engineering, University of Sydney)
  • Published : 2007.03.31

Abstract

The effects of particle size distribution on the magnetorheological response of inverse ferrofluids was investigated using controlled mixtures of two monodisperse non-magnetisable powders of sizes $4.6\;{\mu}m\;and\;80{\mu}m$ at constant volume fraction of 30%, subjected to large amplitude oscillatory shear flow. In the linear viscoelastic regime (pre-yield region), it was found that the storage and loss moduli were dependent on the particle size as well as the proportion of small particles, with the highest storage modulus occurring for the monodisperse small particles. In the nonlinear regime (post yield region), Fourier analysis was used to compare the behaviour of the $1^{st}\;and\;3^{rd}$ harmonics ($I_{1}\;and\;I_{3}\;respectively$) as well as the fundamental phase angle as functions of the applied strain amplitude. The ratio of $I_{3}/I_{1}$ was found to become more pronounced with decreasing particle size as well as with increasing proportion of small particles in the bidisperse mixtures. Furthermore, the phase angle was able to clearly show the transition from solid-like to viscous behaviour. The results suggested that the nonlinear response of a bidisperse IFF is dependent on particle size as well as the proportion of small particles in the system.

Keywords

References

  1. Block, H. and J.P. Kelly, 1988, 'Electro-Rheology', J. Phys, D: Applied Physics 21, 1661-1677 https://doi.org/10.1088/0022-3727/21/12/001
  2. Bombard, A.J.F., M. Knobel, M.R. Alcantara and I. Joekes, 2002, Evaluation of magnetorheological suspensions based on carbonyl iron powders, J. Int. Mat. Syst. Struct. 13, 471-478 https://doi.org/10.1106/104538902030706
  3. Bossis, G. and E. Lemaire, 1991, Yield stresses in magnetic suspensions, J. Rheol. 35, 1345-1354 https://doi.org/10.1122/1.550234
  4. Claracq, J., J. Sarrazin and J. Montfort, 2004, Viscoelastic properties of magnetorheological fluids, Rheol. Acta 43, 38-49 https://doi.org/10.1007/s00397-003-0318-7
  5. De Gans, B.J., C. Blom, A.P. Philipse and J. Mellema, 1999, Linear viscoelasticity of an inverse ferrofluid, Phys. Rev. E 60, 4518-4527 https://doi.org/10.1103/PhysRevE.60.4518
  6. De Gans, B.J., N. Duin, D. Van den Ende and J. Mellema, 2000, The influence of particle size on the magnetorheological properties of an inverse ferrofluid, J. Chem. Phys. 113, 2032-2042 https://doi.org/10.1063/1.482011
  7. Ekwebelam, C.C. and H. See, 2006, Determining the flow curves of an inverse ferrofluid (submitted)
  8. Gamota, D.R. and F.E. Filisko, 1991(a), Dynamic mechanical studies of electrorheological materials: moderate frequencies, J. Rheol. 35, 399-425 https://doi.org/10.1122/1.550221
  9. Gamota, D.R. and F.E. Filisko, 1991(b), High frequency dynamic mechanical study of an aluminosilicate electrorheological material, J. Rheol. 35, 1411-1425 https://doi.org/10.1122/1.550239
  10. Gamota, D.R. and F.E. Filisko, 1991(c), Linear/non-linear mechanical properties of electrorheological materials, in Tao R. (ed), Proc. Int. Conf. on ERFs, World Scientific Publishing Co., New Jersey, 246-263
  11. Gamota, D.R., A.S. Wineman and F.E. Filisco, 1993, Fourier transfer analysis: nonlinear dynamic response of an electrorheological material, J. Rheol. 37, 919-933 https://doi.org/10.1122/1.550403
  12. Iyengar, V.R. and A.A. Alexandridis, 2004, Wear testing of seals in magneto-rheological fluids, Tribology Transactions 47, 23-28 https://doi.org/10.1080/05698190490279083
  13. Kittipoomwong, D. and D.J. Klingenberg, 2005, Dynamic yield stress enhancement in bidisperse magnetorheological fluids, J. Rheol. 49, 1521-1538 https://doi.org/10.1122/1.2085175
  14. Klingenberg, D.J., 2001, Magnetorheology: Applications and Challenges, AIChE J. 47, 246-249 https://doi.org/10.1002/aic.690470202
  15. Kordonski, W.I. and D. Golini, 2000, Fundamentals of magnetorheological fluid utilization in high precision finishing, J. Int. Mat. Syst. Struct. 10(9), 83-89
  16. Lemaire, E., A. Meunier and G. Bossis, 1995, Influence of the particle size on the rheology of magnetorheological fluids, J. Rheol. 39, 1011-1020 https://doi.org/10.1122/1.550614
  17. Li, W.H., H. Du, G. Chen, S.H. Yeo and N. Guo, 2003, Nonlinear viscoelastic properties of MR fluids under large-amplitudeoscillatory- shear, Rheol. Acta 42, 280-286
  18. Lim, S.T., M.S. Cho, I.B. Jang and H.J. Choi, 2004, Magnetorheological characterization of carbonyl iron based suspension stabilized by fumed silica, J. Magn. Magn. Mat. 282, 170-173 https://doi.org/10.1016/j.jmmm.2004.04.040
  19. Magnac, G., P. Meneroud, M.F. Six, G. Patient, R. Leletty and F. Claeyssen, 2006, Characterisation of magneto-rheological fluids for actuators applications, ACTUATOR 2006, 10th International Conference on New Actuators, Bremen, Germany, 856-859
  20. Ota, M. and T. Miyamoto, 1994, Optimum particle size distribution of an electrorheological fluid, J. Appl. Phys. 76, 5528-5532 https://doi.org/10.1063/1.357154
  21. Otsubo, Y., M. Sekine and M. Katayama, 1992, Electrorheological properties of silica suspensions, J. Rheol. 36, 479-496 https://doi.org/10.1122/1.550355
  22. Parthsasrathy, M. and D.J. Klingenberg, 1995, A microstructural investigation of the nonlinear response of electrorheological suspensions (II): Oscillatory shear flow, Rheol. Acta 34, 430-439 https://doi.org/10.1007/BF00396556
  23. Parthasarathy, M. and D.J. Klingenberg, 1996, Electrorheology: Mechanisms and Models, Mater. Sci. Eng. R17, 57-103
  24. Parthasarathy, M. and D.J. Klingenberg, 1999, Large amplitude oscillatory shear of ER fluids, J. Non-Newt. Fluid Mech. 81, 83-104 https://doi.org/10.1016/S0377-0257(98)00096-2
  25. Popplewell, J., R.E. Rosenweig and J.K. Siller, 1995, Magnetorheology of ferrofluid composites, J. Magn. Magn. Mat. 149, 53-56 https://doi.org/10.1016/0304-8853(95)00336-3
  26. Popplewell, J. and R.E. Rosenweig, 1996, Magnetorheological fluid composites, J. Phys, D: Applied Physics 29, 2297-2303 https://doi.org/10.1088/0022-3727/29/9/011
  27. Saldivar-Guerrero, R. Richter, I. Rehberg, N. Aksel, L. Heymann and O.S. Rodriguez-Fernandez, 2005, Liquid to solid transition of inverse ferrofluids, Magnetohydrodynamics 41, 385-390
  28. Saldivar-Guerrero, R. Richter, I. Rehberg, N. Aksel, L. Heymann and O.S. Rodriguez-Fernandez, 2006, Viscoelasticity of monoand polydisperse inverse ferrofluids, J. Chem. Phys 125, (084907) 1-7
  29. See, H., 1999, Advances in modeling the mechanisms and rheology of electrorheological fluids, Korea-Australia Rheol. J. 11, 169-195
  30. See, H., J.S. Field and B. Pfister, 1999, The response of electrorheological fluids under oscillatory squeeze flow, J. Non-Newt. Fluid Mech 84, 149-158 https://doi.org/10.1016/S0377-0257(98)00149-9
  31. See, H., A. Kawai and F. Ikazaki, 2002, The effect of mixing particles of different size on the electrorheological response under steady shear flow, Rheol. Acta 41, 55-60 https://doi.org/10.1007/s003970200005
  32. See, H. and R. Chen, 2004, The behaviour of a field responsive fluid under shear start-up, Rheol. Acta 43, 175-179 https://doi.org/10.1007/s00397-003-0336-5
  33. See, H., R. Chen, and M. Keentok, 2004, The creep behaviour of a field responsive fluid, Colloid Polym. Sci. 282, 423-428 https://doi.org/10.1007/s00396-003-0962-6
  34. Shih, Y. H. and H. Conrad, 1994, Influence of particle size on the dynamic strength of electrorheological fluids, Int. J. Mod. Phys. B 8, 2835-2844 https://doi.org/10.1142/S0217979294001160
  35. Sim, H.G., K.H. Ahn and S.J. Lee, 2003, Three dimensional dynamics simulation of electrorheological fluids under large amplitude oscillatory shear flow, J. Rheol. 47(4), 879-895 https://doi.org/10.1122/1.1582854
  36. Skjeltorp, A.T., 1983, One and Two Dimensional Crystallization of Magnetic Holes, Phys Rev Lett. 51, 2306-2309 https://doi.org/10.1103/PhysRevLett.51.2306
  37. Stanway, R., J.L. Sproston and A.K. El-Wahed, 1996, Applications of electro-rheological fluids in vibration control: a survey, Smart Mater. Struct 5, 464-482 https://doi.org/10.1088/0964-1726/5/4/011
  38. Trendler, A.M. and H. Bose, 2004, Influence of particle size on the rheological properties of magnetorheological suspensions, in Lu K., Shen R. and Liu J. (eds), Proc. 9th Int. Conf. of Electrorheological Fluids and Magnetorheological Suspensions, Beijing, China World Scientific, Singapore, 433-438
  39. Volkova, O., G. Bossis, M. Guyot, V. Bashtovoi and A. Reks, 2000, Magnetorheology of magnetic holes compared to magnetic particles, J. Rheol. 44, 91-104 https://doi.org/10.1122/1.551075
  40. Weiss, K.D., J.D. Carlson and D.A. Nixon, 1994, Viscoelastic properties of magneto- and electro-rheological fluids, J. Int. Mat. Syst. Struct. 5, 772-775 https://doi.org/10.1177/1045389X9400500607
  41. Wereley, N.M., A. Chaudhuri, J.H. Yoo, S. John, S. Kotha, A. Suggs, R. Radhakrishnan, B.J. Love and T.S. Sudarshan, 2006, Bidisperse magnetorheological fluids using Fe particles at nanometer and micron scale, J. Int. Mat. Syst. Struct. 17, 393-401 https://doi.org/10.1177/1045389X06056953
  42. Wilhelm, M., D. Maring and H.W. Spiess, 1995, Fourier-transform rheology, Rheol. Acta 37, 399-405 https://doi.org/10.1007/s003970050126
  43. Wu, C.W. and H. Conrad, 1998, Influence of mixed particle size on electrorheological response, J. Appl. Phys. 83(7), 3880-3884 https://doi.org/10.1063/1.366621