DOI QR코드

DOI QR Code

Carbon Nanotube/Nafion Composites for Biomimetic Artificial Muscle Actuators

  • Lee, Se-Jong (Department of Advanced Materials Engineering, Kyungsang University) ;
  • Yoon, Hyun-Woo (Department of Advanced Materials Engineering, Kyungsang University) ;
  • Lee, Deuk-Yong (Department of Materials Engineering, Daelim College of Technology)
  • Published : 2007.04.30

Abstract

Multi-walled carbon nanotube (M-CNT)/Nafion nanocomposites were prepared by solution casting to elucidate the effect of M-CNT addition, from 0 to 7 wt%, on the viscoelastic behavior of the composites. The M-CNT bundles induced by the Nafion polymer were determined to be uniformly distributed for the 1 wt% M-CNT/Nafion nanocomposites. The 1 wt% M-CNT/Nafion composite exhibited the highest blocking stress of 2.3 kPa due to its high elastic modulus of 0.485 GPa. From a dynamic mechanical analysis, the 1 wt% M-CNT had the highest storage and loss moduli compared with the other samples in all frequency and temperature ranges. From the storage modulus data, the M-CNT loaded composites had similar $T_g$ values near $120^{\circ}C$. The glass transition temperatures of the M-CNT loaded composites were $120^{\circ}C$ (1 wt%), $117^{\circ}C$ (3 wt%), $117^{\circ}C$ (5 wt%), and $135^{\circ}C$ (7 wt%), suggesting that the effect of the M-CNTs on the Nafion film begins at 1 wt%. Thus, it has been concluded that the 1 wt% M-CNT disported composite is attractive for actuator applications.

Keywords

References

  1. R. H. Baughman, C. Cui, A. A. Zakhidov, Z. Lqbal, J. N. Barisci, G. M. Spinks, G. G. Wallace, A. Mazzoldi, D. De Rossi, A. G. Rinzler, O. Jaschinski, S. Roth, and M. Kertesz, 'Carbon Nanotube Actuators,' Science, 284 1340- 44 (1999) https://doi.org/10.1126/science.284.5418.1340
  2. A. M. Rao, P. C. Eklund, S. Bandow, A. Theses, and R. E. Smalley, 'Evidence for Charge Transfer in Doped Carbon Nanotube Bundles from Raman Scatterings,' Nature, 388 257-9 (1997) https://doi.org/10.1038/40827
  3. B. J. Landi, R. P. Raffaelle, M. J. Heben, J. L. Alleman, W. Van Derveer, and T. Gennett, 'Single Wall Carbon Nanotube- Nafion Composite Actuators,' Nano Lett., 2 1329-32 (2002) https://doi.org/10.1021/nl025800h
  4. K. J. Kim and M. Shahinpoor, 'A Novel Method of Manufacturing Three-dimensional Ionic Polymer-metal Composites (IPMCs) Biomimetic Sensors, Actuators and Artificial Muscles,' Polymer, 43 797-802 (2002) https://doi.org/10.1016/S0032-3861(01)00648-6
  5. M. Shahinpoor, Y. Bar-Cohen, J. O. Simpson, and J. Smith, 'Ionic Polymer-metal Composites (IPMCs) as Biomimetic Sensors and Structures-A Review,' Smart Mater. Struct., 7 R15-30 (1998) https://doi.org/10.1088/0964-1726/7/6/001
  6. M. Shahinpoor and K. J. Kim, 'Ionic Polymer-metal Composites: III. Modeling and Simulation as Biomimetic Sensors, Actuators, Transducers and Artificial Muscles,' Smart Mater. Struct., 13 1362-88 (2004) https://doi.org/10.1088/0964-1726/13/6/009
  7. D. Y. Lee, S. Heo, K. J. Kim, D. Kim, M. Lee, and S. Lee, 'Electrically Controllable Biomimetic Actuators made with Multiwalled Carbon Nanotube (MWNT) Loaded Ionomeric Nanocomposites,' Key Eng. Mater., 284-286 733-36 (2005) https://doi.org/10.4028/www.scientific.net/KEM.284-286.733
  8. D. Bom, R. Andrews, D. Jacques, J. Anthony, B. Chen, M. S. Meier, and J. P. Selegue, 'Thermogravimetric Analysis of the Oxidation of Multiwalled Carbon Nanotubes: Evidence for the Role of Defect Sites in Carbon Nanotube Chemistry,' Nano Lett., 2 615-9 (2002) https://doi.org/10.1021/nl020297u
  9. A. B. Bashaiwouldu, F. Podczeck, and J. M. Newton, 'Application of Dynamic Mechanical Analysis to Determine the Mechanical Properties of Pellets,' Intl. J. Pharm., 269 329-42 (2004) https://doi.org/10.1016/j.ijpharm.2003.09.028
  10. Q. Chen, S. I. Ringleb, T. Hulshizer, and K. An, 'Identification of the Testing Parameters in High Frequency Dynamic Shear Measurement on Agarose Gels,' J. Biomech., 38 959-63 (2005) https://doi.org/10.1016/j.jbiomech.2004.05.015
  11. D. Y. Lee, M. Lee, K. J. Kim, S. Heo, B. Kim, and S. Lee, 'Effect of Multiwalled Carbon Nanotube (M-CNT) Loading on M-CNT Distribution Behavior and the Related Electromechanical Properties of the M-CNT Dispersed Ionomeric Nanocomposites,' Surf. Coat. Technol., 200 1920-25 (2005) https://doi.org/10.1016/j.surfcoat.2005.08.024
  12. D. Y. Lee, K. J. Kim, S. Heo, M. Lee, and B. Kim, 'Application of an Equivalent Circuit Model for Ionic Polymermetal Composite (IPMC) Bending Actuator Loaded with Multiwalled Carbon Nanotube (M-CNT),' Key Eng. Mater., 309-311 593-96 (2006) https://doi.org/10.4028/www.scientific.net/KEM.309-311.593
  13. T. Pritz, 'Frequency Power Law of Material Damping,' Appl. Acoustics, 65 1027-36 (2004) https://doi.org/10.1016/j.apacoust.2004.06.001