DOI QR코드

DOI QR Code

이득과 분산을 조절한 광섬유의 변조 불안정성 분석

Modulation Instability in Dispersion and Gain Managed Fibers

  • Choi, Byung-Hoon (School of Electrical and Computer Engineering, Ajou University) ;
  • Kim, Sang-In (School of Electrical and Computer Engineering, Ajou University)
  • 발행 : 2007.04.25

초록

본 논문에서는 주기적으로 분산 값의 부호가 바뀌는(dispersion managed: DM) 선로에서 급작스런 분산 변화로 인한 scattering을 완화시키도록 이득을 공간적으로 변조(gain management: GM)하는 시스템을 제안하고 이에 대한 modulation instability(MI) 변화에 대한 이론적인 분석과 수치해석적인 분석을 보고한다. 연구결과 어떤 경우에도 GM을 가한 시스템이 DM만을 한 시스템 보다 MI 이득의 크기와 cutoff frequency, side band peak모두가 작아짐을 확인하였다. 동일한 광신호 세기에 대해서 MI 이득이 작아지는 것은 four wave mixing 등 광섬유의 비선형 현상을 완화시킴으로써 파장분할다중화 전송의 품질 향상에 도움이 될 뿐 아니라, 솔리톤(soliton)을 이용한 전송에 있어서 하나의 펄스에 더 많은 에너지를 갖게 함으로써 신호대 잡음비를 개선할 수 있음을 의미한다. 본 논문에서는 분산과 이득이 동시에 조절된 선로의 효과를 솔리톤 전송 시스템의 개선된 특성을 편광모드분산(polarization mode dispersion: PMD)가 존재하는 선로에서의 펄스 폭 증가를 통하여 살펴본다.

We investigated analytically and numerically the occurrence of modulation instability in fibers with periodic changes both in dispersion and gain. Previously, it has been known that the modulation instability is suppressed in dispersion managed solitons where dispersion is managed in such a way that the local dispersion alternates between the normal and the anomalous regimes. In this work, we enhanced the advantage of the dispersion management scheme by additionally introducing proper gain/loss profiles in fibers. The gain/loss profile is given by $\Gamma(z)=0.5/D(z)*(dD/dz)$, where D(z) represents the dispersion profile. The fundamental gain spectra of the modulation instability in the dispersion and gain managed fibers have been derived analytically and confirmed by numerical calculation. Our investigation reveals that in the dispersion and gain fibers the modulation instabilities are always much more suppressed compared to the case with only dispersion managed. In practical dispersion management schemes, dispersion profiles show discontinuity. and thus. the corresponding gain/loss profiles tend to be finite. In these cases, the gain/loss profiles were approximated by lumped gains/losses of finite values. Our numerical calculations confirm that this approximation also works well.

키워드

참고문헌

  1. V. Chernyak, M. Chertkov, I. Gabitov, I. Kolokolov, and V. Lebedev, 'PMD-Induced Fluctuations of Bit-Error Rate in Optical Fiber Systems,' J. Lightwave Technol., vol. 22, pp. 1155-1168, 2004 https://doi.org/10.1109/JLT.2004.825237
  2. L. F. Mollenauer, J. P. Gordon, and M. N. Islam, 'Soliton Propagation in Long Fibers with Periodically Compensated Loss,' IEEE J. Quantum Electron., vol. 22, pp. 157-173, 1986 https://doi.org/10.1109/JQE.1986.1072858
  3. H. Kubota and M. Nakazawa, 'Soliton Transmission Control in Time and Frequency Domains,' IEEE J. Quantum Electron., vol. 29, pp. 2189-2197, 1993 https://doi.org/10.1109/3.237493
  4. M. Matsumoto, Y. Akagi, and A. Hasegawa, 'Propagation of Solitons in Fibers with Randomly Varying Birefringence : Effects of Soliton Transmission Control,' J. Lightwave Technol., vol. 15, pp. 584-589, 1997 https://doi.org/10.1109/50.566679
  5. X. Zhang, M. Karlsson, P. A. Andrekson, and K. Bertilsson, 'Soliton Stability in Optical Fibers With Polarization-Mode Dispersion,' IEEE Photon. Technol. Lett., vol. 10, pp. 376-378, 1998 https://doi.org/10.1109/68.661415
  6. C. Xie, M. Karlsson, and P. A. Andrekson, 'Soliton Robustness to the Polarization-Mode Dispersion in Optocal Fibers,' IEEE Photon. Technol. Lett., vol. 12, pp. 801-803, 2000 https://doi.org/10.1109/68.853505
  7. N. J. Smith, N. J. Doran, W. Forysiak, and F. M. Knox, 'Soliton Transmission Using Periodic Dispersion Compensation,' J. Lightwave Technol., vol. 15, pp. 1808-1822, 1997 https://doi.org/10.1109/50.633558
  8. M. Nakazawa, H. Kubota, A. Sahara, and K. Tamura, 'Marked Increase in the Power Margin Through the Use of a Dispersion-Allocated Soliton,' IEEE Photon. Technol. Lett., vol. 8, pp. 1088-1090, 1996 https://doi.org/10.1109/68.508747
  9. J. H. B. Nijhof, N. J. Doran, W. Forysiak, and A. Berntson, 'Energy enhancement of dispersion-managed solitons and WDM,' Electron. Lett., vol. 34, pp, 481-482, 1998 https://doi.org/10.1049/el:19980367
  10. H. Sunnerud, J. Li, C. Xie, and P. A. Andrekson, 'Experimental Quantification of Soliton Robustness to Polarization Mode Dispersion in Conventional and Dispersion-Managed Systems,' J. Lightwave Technol., vol. 19, pp. 1453-1461, 2001 https://doi.org/10.1109/50.956132
  11. C. Xie, M. Karlsson, P. A. Andrekson, and H. Sunnerud, 'Robusteness of Dispersion-Managed Solitons to the Polarization-Mode Dispersion in Optical Fibers,' IEEE Photon. Technol. Lett., vol. 13, pp. 121-123, 2001 https://doi.org/10.1109/68.910508
  12. G. P. Agrawal, Nonlinear Fiber Optics. New York : Academic Press, 1993
  13. D. Anderson and M. Lisak, 'Modulational instability of coherent optical-fiber transmission signals,' Opt. Lett., vol. 9, pp. 468-470, 1984 https://doi.org/10.1364/OL.9.000468
  14. N. J. Smith and N. J. Doran, 'Modulational instabilities in fibers with periodic dispersion management,' Opt. Lett., vol. 21, pp. 570-572, 1996 https://doi.org/10.1364/OL.21.000570
  15. P. Kaewplung, T. Angkaew, and K. Kikuchi, 'Complete Analysis of Sideband Instability in Chain of Periodic Dispersion-Managed Fiber Link and Its Effect on Higher Order Dispersion-Managed Long-Haul Wavelength-Division Multiplexed Systems,' J. Lightwave Technol., vol. 20, pp. 1895-1907, 2002 https://doi.org/10.1109/JLT.2002.806365