DOI QR코드

DOI QR Code

Twin-Image Elimination in In-line Digital Holography Microscope

In-line 디지털 홀로그래피 현미경에서 쌍둥이 상 제거연구

  • Published : 2007.04.25

Abstract

A fundamental problem in the in-line digital holography microscope is that the real image and virtual image and zero-order image are not separated spatially. In this paper, we have eliminated the zero-order noise by an averaging method and the twin image is divided using a geometrical set-up in an in-line digital holographic microscope. The size of the virtual image depends on the distance between the objective lens and the hologram plane and on the distance between the hologram plane and the image plane. We found that the virtual image size is smallest when the distance between the objective lens and the hologram plane is equal to the back focal length of the objective lens. We could divide the virtual image and real image by controlling the distance between the hologram plane and the objective lens.

In-line 디지털 홀로그래피가 가지고 있는 가장 근본적인 단점은 실상과 허상 그리고 영차 회절광이 공간적으로 분리 되지 않는 것이다. 본 연구에서는 영차 회절광은 소프트웨어를 이용하여 제거하고, 실상과 허상의 구분은 in-line 홀로그래피 현미경의 기하학적 배치를 이용하여 구분하였다. in-line 홀로그래피 현미경에서 허상의 크기는 대물렌즈와 홀로그램간의 거리에 의존한다. 본 연구에서는 허상의 크기가 대물렌즈의 후방 초점거리와 대물렌즈와 홀로그램 면까지의 거리가 일치할 때 최소가 되는 것을 알았으며, 이를 이용하여 실상과 허상을 구분하였다.

Keywords

References

  1. J. W. Goodman and R. W. Lawrence, 'Digital image formation from electronically detected holograms,' Appl. Phys. Lett., vol. 11, pp. 77-79, 1967 https://doi.org/10.1063/1.1755043
  2. M. A. Kronrod, N. S. Merzlyakov, and L. P. Yaroslavski, 'Reconstruction of jplogram with a computer,' Sov. Phys. Tech., vol. 17, pp. 434-444, 1972
  3. G. K. Wernicke, O. Kruschke, N. Demoli, and H. Gruber, 'Investigation of- micro-opto-electro-mechanical components with a holographic microscopic interferometer,' SPIE, vol. 3396, pp. 238-243, 1998 https://doi.org/10.1117/12.301528
  4. L. Xu, X. Peng, J. Miao, and K. Asundi, 'Studies of digital microscopic with application to microstructure testing,' Appl. Opt., vol. 40, pp. 5046-5051, 2001 https://doi.org/10.1364/AO.40.005046
  5. H. Cho, D. Kim, Y. Yu, W. Jung, and S. Shin, '3- Dimensional Measurement using Digital Holographic Microscope and Phase Unwrapping', 한국광학회지, vol. 17, pp. 329-334, 2006 https://doi.org/10.3807/KJOP.2006.17.4.329
  6. S. Kim, H. Lee, and J. Son, 'Recording of larger object by using two confocal lenses in digital holography,' 한국광학회지, vol. 14, pp. 244-248, 2003
  7. U. Schnars, 'Direct phase determination in hologram interferometry with use of digitally recorded holograms,' J. Opt. Soc. Am., vol. A 11, pp. 2011-2015, 1994 https://doi.org/10.1364/JOSAA.11.002011
  8. C. Wagneer, S. Seebacher, W. Osten, and W. Juptner, 'Digital recording and numerical reconstruction of lensless Fourier holograms in optical metrology,' Appl. Opt., vol. 38, pp. 4812-4820, 1999 https://doi.org/10.1364/AO.38.004812
  9. Y. Takaki and H. Ohzu, 'Fast numerical reconstruction technique for high resolution hybrid holographic microscopy,' Appl. Opt., vol. 38, pp. 2204-2055, 1999 https://doi.org/10.1364/AO.38.002204
  10. L. Xu, J. Miao, and A. Asundi, 'Properties of digital holography based on in-line configuration,' Opt. Eng., vol. 39, pp. 3214-3219, 1999 https://doi.org/10.1117/1.1327503
  11. J. W. Goodman, Introduction to Fourier Optics (Roberts & Company Publishers, USA, 2005)
  12. U. Schnars and W. Juepther, Digital Holography (Springer, Heidelberg, Germany, 2005)
  13. L. Denis, F. Corinne, F, Thierry, and D. Christophe, 'Twinimage noise reduction by phase retrieval in in-line digital holography', SPIE, vol. 5914, pp. 148-161, 2005 https://doi.org/10.1117/12.617405
  14. C. Depeursinge, Digital Holography Applied to Microscopy (Springer, USA, 2006), pp.95-143
  15. E. Cuche, P. Marquet, and C. Depeursinge, 'Simultaneous amplitude-contrast and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel off-axis holograms,' Appl. Opt., vol. 38, pp. 6994-7001, 1999 https://doi.org/10.1364/AO.38.006994
  16. M. Liebling, On Fresnelets, interference fringes, and digital holography (Ph. D Thesis, Switzerland, 2040), pp. 101-122
  17. E. Cuche, P. Marquet, and C. Depeursinge, 'Spatial filtering for zero-order and twin image eleimination in digital offaxis holography,' Appl. Opt., vol. 39, pp. 4070-4075, 2000 https://doi.org/10.1364/AO.39.004070
  18. Th. M. Kreis and W. P. O. Juptner, 'Suppression of the DC term in digital holography,' Opt. Eng., vol. 36, pp. 2357-2360, 1997 https://doi.org/10.1117/1.601426
  19. C. Liu, Y. Li, X. Cheng, Z. Liu, F. Bo, and J. Zhu, 'Elimination of zero-order diffraction in digital holography,' Opt. Eng., vol. 41, pp. 2434-2437, 2002 https://doi.org/10.1117/1.1502682
  20. B. Skarman, J. Becker, and K. Wozniak, 'Simultaneous 3D-PIV and Temperature Measurements Using a New CCD-Based Holographic Interferometer,' Flow Meas. Instrum., vol. 7, pp. 1-6, 1996 https://doi.org/10.1016/0955-5986(96)00006-4
  21. I. Yamaguchi and T. Zang, 'Phase-Shifting Digital Holography,' Opt. Lett., vol. 22, pp. 1268-1270, 1997 https://doi.org/10.1364/OL.22.001268
  22. T. Zang and I. Yamaguchi, 'Three Dimensional Microscopy with Phase-Shifting Digital Holography,' Opt. Lett., vol. 23, pp. 1221-1223, 1998 https://doi.org/10.1364/OL.23.001221