Characterization of Segmented Block Copolyurethane Network Based on Glycidyl Azide Polymer and Polycaprolactone

  • Published : 2007.04.30

Abstract

To improve the poor mechanical and low-temperature properties of glycidyl azide polymer (GAP)-based propellants, the addition of binders was investigated using GAP and flexible polymer backbone-structural polycaprolactone (PCP) at various weight(wt) ratios, and varying the ratio of Desmodur N-100 pluriisocyanate (N-100) to isophorone diisocyanate (IPDI). Using Gee's theory, the solubility parameter of the PCP network was determined, in order to elucidate the physical and chemical interaction between GAP and PCP. The structure of the binder networks was characterized by measuring the cross-link densities and molecular weights between cross-links ($M_c$) obtained by a swelling experiment using Flory-Rhener theory. The thermal and mechanical properties of the segmented block copolyurethane (GAP-b-PCP) binders prepared by the incorporation of PCP into the binder recipes were investigated, along with the effect of the different curatives ratios.

Keywords

References

  1. A. Provatas, Energetic Polymers and Plasticizers for Explosive Formulation - A Review of Recent Advances, DSTO-TR-0966 Commonwealth of Australia, Australia, 2000
  2. M. B. Frankel, L. R. Grant, and J. E. Flanagan, J. Prop. Power, 8, 560 (1992)
  3. N. Kubota, T. Sonobe, A. Yamamoto, and H. Shimizu, J. Prop. Power, 6, 686 (1990)
  4. I. Konami, K. Kobayashi, and K. Kato, Solid Propellant Chemistry, Combustion, and Motor Interior Ballistics, V. Yang, T. B. Brill, and W. Z. Ren, Eds., Progress in Astronautics and Aeronautics, AIAA, 2000, Vol. 185, p. 455
  5. Y. Longevialle, H. Mace, G. Berteleau, and M. Golfier, in Proc. ADPA Intern. Symp. on Energetic Materials Technology, 1995, pp. 125-131
  6. H. P. Mama, Space Flight, 38, 409 (1994)
  7. R. G. Stacer and D. M. Husband, Propell. Explos. Pyrot., 16, 167 (1991)
  8. B. S. Min, J. Kor. Inst. Mil. Sci. Tech., 8, 69 (2005)
  9. S. R. Jain, V. Sekkar, and V. N. Krishnamurthy, J. Appl. Polym. Sci., 48, 1515 (1993)
  10. E. S. Sutton, AIAA/SAE/ASME 20th Joint Propulsion Conference, 1236 (1984)
  11. T. F. Comfort, R. M. Steckman, and K. O. Hartman, CPIA Publication 630, 3, 87 (1995)
  12. V. Vasudevan and G. Sundararajan, Propell. Explos. Pyrot., 24, 295 (1999)
  13. K. Subramanian, Eur. Polym. J., 35, 1403 (1999)
  14. V. T. Bui, E. Ahad, D. Rheaume, and M. P. Raymond, J. Appl. Polym. Sci., 62, 27 (1996)
  15. Y. M. Mohan and K. M. Raju, Int. J. Polym. Mat., 55, 203 (2006) https://doi.org/10.1002/pi.1903
  16. Y. M. Mohan, M. P. Raju, and K. M. Raju, Int. J. Polym. Mat., 54, 651 (2005) https://doi.org/10.1002/pi.1717
  17. B. S. Min, G. Baek, and S. W. Ko, Submitted
  18. K. J. Kolonko, M. W. Barners, and L. L. Biegert, US Patent 4,77,432 (1988)
  19. S. W. Hong, K. H. Kim, J. Huh, C. H. Ahn, and W. H. Jo, Macromol. Res., 13, 397 (2005)
  20. J. S. Yoo, M. S. Kim, D. S. Lee, B. S. Kim, and J. H. Kim, Macromol. Res., 14, 117 (2006) https://doi.org/10.1007/BF03219078
  21. S. Shukla, A. K. Bajpai, and J. Bajpai, Macromol. Res., 11, 273 (2003)
  22. G. Gee, Trans. Inst. Rubber. Ind., 18, 266 (1943)
  23. E. E. Hamurcu and B. M. Baysal, J. Polym. Sci.; Part B: Polym. Phys., 32, 591 (1994)
  24. P. J. Flory, Principles of Polymer Chemistry, Cornell University Press, Ithaca, New York, 1953
  25. D. J. Plazek, G. F. Gu, R. G. Stacer, L. J. Su, E. D. Von Meerwall, and F. N. Kelley, J. Mater. Sci., 23, 1289 (1988)
  26. L. R. G. Treolar, The Physics of the Rubber Elasticity, 3rd ed., Clarendon Press, Oxford, 1975