Activation and In Vitro Development of Porcine Oocytes Treated with Ethanol, $Ca^{2+}-Ionophore$ and Strontium

Ethanol, $Ca^{2+}-Ionophore$ 및 Strontium이 돼지 난자의 활성화와 체외 발달에 미치는 영향

  • Ahn, H.J. (Department of Animal Science, Insti. of Ag. Sci and Tech., College of Agriculture & Life Science, Chonnam National University) ;
  • Lee, J.W. (Department of Animal Science, Insti. of Ag. Sci and Tech., College of Agriculture & Life Science, Chonnam National University) ;
  • Kang, M.J. (Department of Animal Science, Insti. of Ag. Sci and Tech., College of Agriculture & Life Science, Chonnam National University) ;
  • Moon, S.J. (Department of Animal Science, Insti. of Ag. Sci and Tech., College of Agriculture & Life Science, Chonnam National University)
  • 안현정 (전남대학교 농업생명과학대학 동물자원학부, 농업과학기술연구소) ;
  • 이지웅 (전남대학교 농업생명과학대학 동물자원학부, 농업과학기술연구소) ;
  • 강만종 (전남대학교 농업생명과학대학 동물자원학부, 농업과학기술연구소) ;
  • 문승주 (전남대학교 농업생명과학대학 동물자원학부, 농업과학기술연구소)
  • Published : 2007.03.31

Abstract

The objective of this study was to examine the optimal concentration and the exposure time of ethanol, Ca-ionophore, and strontium to achieve massive recipient oocytes in porcine. The cleavage (51.4% vs. $21.3{\sim}44.3%$) and embryo development rates (45% vs. $13.3{\sim}29.9%$) were significantly higher (p.0.05) in oocytes treated with 10% ethanol for 10 min than other treatments. The oocytes treated with 25mM Ca-ionophore for a minimum of 2min and 20mM strontium for a minimum of 6h showed significantly higher cleavage and embryo development rates than those of other treatments (P<0.05). Cleavage rate with duplicated ethanol treatment was significantly lower than those with ethanol alone (P<0.05). The cleavage rate and embryo development rates were significantly lower in duplicated strontium treatment than those in both alone and combination (P<0.05). But the cleavage and embryo development rates in treatment with Ca-ionophore were significantly higher in combined treatment (Ca-ionophore and cycloheximide) than those in single or duplicated treatment (P<0.05). These results might induce establishment of the optimal concentration and the exposure time on activation media to build up activation condition of porcine oocytes.

본 연구는 효율적인 돼지 난자의 활성화를 통한 수핵란의 대량 확보를 위하여 ethanol, Ca-ionophore 및 strontium의 최적 농도 및 노출 시간을 규명하기 위하여 실시되었다. Ethanol은 10%에서 10분간 노출시켰을 때 난할율과 배발달 성적이 각각 51.4%와 45%로 다른 처리구에 비하여 유의적으로 높았으며 (P<0.05), Ca-ionophore는 $25{\mu}M$에서 2분간 노출시켰을 때 난할율과 배발달 성적이 유의적으로 높았다. 또한 strontium은 20mM에서 6시간 노출시켰을 때 난할율과 배발달 성적 모두 유의적으로 높았다(P<0.05). Strontium중복 처리는 단독 및 병용처리 할 때보다 난할율과 배발달율 모두 유의 적으로 낮았다(P<0.05). 이러한 결과는 돼지 난자의 활성화 조건을 확립하기 위한 활성화제의 최적 농도와 노출 시간 확립에 기여할 수 있으리라 생각된다.

Keywords

References

  1. Aoyagi Y, Kameyama and Takeda T. 1992. Artificial activation of bovine oocytes matured in vitro by elective shock or exposure to ionophore A23187. Theriogenology, 37:188 (Abstr.) https://doi.org/10.1016/0093-691X(92)90257-R
  2. Collas P, Fissore R, Robl JM, Sullivan EJ and Barnes FL. 1993. Electrically induced calcium elevation, activation and parthenogenetic development of bovine oocytes. Mol. Reprod. Dev., 34:212-223 https://doi.org/10.1002/mrd.1080340214
  3. Ding J, Moor RM and Foxcroft GR. 1992. Effects of protein synthesis on maturation, sperm penetration and pronuclear development in porcine oocytes. Mol. Reprod. Dev., 40:253-258
  4. Fukui Y, Sawai K, Furudate M, Sato N, Iwazumi Y and Ohsaki K. 1992. Parthenogenetic development of bovine oocytes treated with ethanol and cytochalasin M after in vitro maturation. Mol. Reprod. Dev., 33:357-362 https://doi.org/10.1002/mrd.1080330318
  5. Funahashi H, Cantley TC, Stumpf TT, Terloiw SL and Day BN. 1994. In vitro development of in vitro matured porcine oocytes following chemicals activation or in vitro fertilisation. Bio. Reprod., 50: 1072-1077 https://doi.org/10.1095/biolreprod50.5.1072
  6. Hashimoto N and Kishimoto T. 1998. Regulation of meiotic metaphase by a cytoplasmic maturation promoting factor during mouse oocytes maturation. Dev. Biol., 126:242-252 https://doi.org/10.1016/0012-1606(88)90135-2
  7. Kaufman MH. 1973. Parthenogenesis in the mouse. Nature, 242: 457-476
  8. Kline D and Kline JT. 1992. Repetitive calcium transients and the role of calcium in exocytosis and cell cycle activation in the mouse egg. Dev. Biol., 149:80-89 https://doi.org/10.1016/0012-1606(92)90265-I
  9. Kurome A, Fujimura T, Miyazaki and Nagashima H. 2003. Comparison of electro-fusion and intra-cytoplasnic nuclear transfer injection methods in pig cloning. Cloning and Stem Cell, 5: 367-378 https://doi.org/10.1089/153623003772032862
  10. Lee JW, Tian XC and Yang X. 2004. Optimization of parthenogenetic activation protocil in porcine. Mol. Reprod. Dev., 68:51-57 https://doi.org/10.1002/mrd.20043
  11. Liu L, Ju JC and Yang X. 1998. Parthenogenetic development and protein patterns of newly matured bovine oocytes after chemical activation. Mol. Reprod. Dev., 49:298-307 https://doi.org/10.1002/(SICI)1098-2795(199803)49:3<298::AID-MRD10>3.0.CO;2-T
  12. Loi P, Ledda S, Fulka Jr, Cappai P and Moor RM. 1998. Development of parthenogenetic and cloned bovine embryo : Effect of activation protocols. Biol. Reprod., 58: 1177-1187 https://doi.org/10.1095/biolreprod58.5.1177
  13. Loren J and Orle LK. 2006. The employment of strontium to activate mouse oocytes : effects on spermatid-injection outcom. Reproduction, 131 :259-267 https://doi.org/10.1530/rep.1.00894
  14. Marcus GJ. 1990. Activation of cumulus cells-free mouse oocytes. Mol. Reprod. Dev., 26:159-162 https://doi.org/10.1002/mrd.1080260210
  15. Minarnihashi A, Watson AJ, Watson PH, Church RB and Schultz GA. 1993. Bovine parthenogenetic blastocytes following in vitro maturation and oocytes actovation with ethanol. Theriogenology, 40:63-76 https://doi.org/10.1016/0093-691X(93)90341-2
  16. Park KW, Chung HT, Lai L, Kuhholzer B, Samuel M, Bonk A, Im GS, Rieke A, Murphy C, Carter DV and Prather RS. 2001. Production of nuclear transfer-derived swine that express the enhanced green fluorescent protein. Anim. Biotech., 12: 173-181 https://doi.org/10.1081/ABIO-100108344
  17. Pincus G and Enzmann EV. 1935. The comparative behavior of mammalian eggs in vivo and in vitro. I. The activation of ovarian eggs. J. Exp. Med., 62:665-675 https://doi.org/10.1084/jem.62.5.665
  18. Presicce GA and Yang X. 1994. Nuclear dynamics of parthenogenesis of bovine oocytes matured in vitro for 20 and 40 hours and activated with combined ethanol and cycloheximide treatment. Mol. Reprod. Dev., 37:61-68 https://doi.org/10.1002/mrd.1080370109
  19. Rho GJ, Wu B, Kawarsky S, Leibo SP and Betteridge KJ 1998. Activation regimens to prepare bovine oocyte. Mol. Reprod. Dev., 50:485-492 https://doi.org/10.1002/(SICI)1098-2795(199808)50:4<485::AID-MRD12>3.0.CO;2-1
  20. Rickords LF and White KL. 1992. Electrofusion induced intracellular $Ca^{2+}$ flux and its effect on murine oocytes activation. Mol. Reprod. Dev., 32:152-159 https://doi.org/10.1002/mrd.1080320211
  21. Rozinek J, Peter J, Grocholova R and Jilek F. 1996. Interphase-like chromatin configuration induced by cycloheximide in maturing pig oocytes: effects of protein phophatase inhibitors. Int. J. Dev. Biol., 40:1171-1366
  22. Russo Gl, Wilding M, Marino M and Dale B. 1998. Ins and outs of meiosis in ascidians. Semin. Cell Dev. Biol., 9:559-567
  23. Shi Z, Jiang S and Yang X. 1993. Synergistic effect of A23187 and cycloheximide allows effective activation of freshly matured bovine oocytes. Theriogenology, 38:309 (Abstr.)
  24. Simone CM, Claudia LVL and Joaquim MG. 2004. Activation and early parthenogenesis of bovine oocytes treated with ethanol and strontium. Anim. Reprod. Sci., 81:35-46 https://doi.org/10.1016/j.anireprosci.2003.09.004
  25. Salay E, Kauka J, Viuff D, Smith SD, Callesan SD and Greve T. 1997. Time course of pronuclear deoxiribonucleic acid synthesis in parthenogenetically activated bovine oocytes. Biol. Reprod., 57:27-35 https://doi.org/10.1095/biolreprod57.1.27
  26. Swann K and Lai FA. 1997. A novel signaling mechanism far generating $Ca^{2+}$ oscillations at fertilization in mammals. Bioassays, 19:374-378
  27. Wakayama T, Perry ACF, Zuccotti M, Johnson KR and Yanagimachi R. 1998. Full-term development of mice from enucleated oocytes injected with cumulus cell nuclei. Nature, 394:369-374 https://doi.org/10.1038/28615
  28. Ware CB, Barnes FL, Maiki-Laurila M and First NL. 1989. Age dependence of bovine oocyte activation. Gamete Res., 22: 265-275 https://doi.org/10.1002/mrd.1120220304
  29. Watanabe N, Vande Woude GF, Ikawa Y and Sagatta N. 1989. Specific proteolysis of the c-mos proto-oncogene product by calpain on fertilization of Xenopus eggs. Nature, 342:505-511 https://doi.org/10.1038/342505a0