DOI QR코드

DOI QR Code

Penalized Likelihood Regression with Negative Binomial Data with Unknown Shape Parameter

  • Kim, Young-Ju (Department of Information Statistics, Kangwon National University)
  • Published : 2007.04.30

Abstract

We consider penalized likelihood regression with data from the negative binomial distribution with unknown shape parameter. Smoothing parameter selection and asymptotically efficient low dimensional approximations are employed for negative binomial data along with shape parameter estimation through several different algorithms.

References

  1. Gu, C. (1992). Cross-validating non-Gaussian data. Journal of Computational and Graphical Statistics, 1, 169-179 https://doi.org/10.2307/1390840
  2. Gu, C. (2002). Smoothing Spline ANOVA Models. Springer-Verlag, New York
  3. Gu, C. and Kim, Y.-J. (2002). Penalized likelihood regression: general formulation and efficient approximation. The Canadian Journal of Statistics, 30, 619-628 https://doi.org/10.2307/3316100
  4. Gu, C. and Xiang, D. (2001). Cross-validating non-Gaussian data: generalized approximate cross-validation revisited. Journal of Computational and Graphical Statistics, 10, 581-591 https://doi.org/10.1198/106186001317114992
  5. Kim, Y.-J. (2005). Computation and smoothing parameter selection in penalized likelihood regression, The Korean Communications in Statistics, 12, 743-758 https://doi.org/10.5351/CKSS.2005.12.3.743
  6. Kim, Y.-J. (2006) Bayesian confidence intervals in penalized likelihood regression, The Korean Communications in Statistics, 13, 141-150 https://doi.org/10.5351/CKSS.2006.13.1.141
  7. Kim, Y.-J. and Gu, C. (2004). Smoothing spline Gaussian regression: more scalable computation via efficient approximation. Journal of the Royal Statistical Society, Ser. B, 66, 337-356 https://doi.org/10.1046/j.1369-7412.2003.05316.x
  8. Van de Ven, R. (1993). Estimating the Shape parameter for the Negative Binomial distribution. Journal of Statistical Computation and Simulation, 46, 111-123 https://doi.org/10.1080/00949659308811497
  9. Wahba, G. (1978). Improper priors, spline smoothing and the problem of guarding against model errors in regression. Journal of the Royal Statistical Society, Ser. B, 40, 364-372
  10. Wahba, G. (1983). Bayesian 'confidence intervals' for the cross-validated smoothing spline. Journal of the Royal Statistical Society, Ser. B, 45, 133-150
  11. Xiang, D. and Wahba, G. (1996). A generalized approximate cross validation for smoothing splines with non-Gaussian data. Statistica Sinica, 6, 675-692