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Bayesian Inference for Multinomial Group Testing

Tae-Young Heo') and Jong-Min Kim?

Abstract

This paper consider trinomial group testing concerned with classifica-
tion of N given units into one of k disjoint categories. In this paper, we
propose Bayesian inference for estimating individual category proportions
using the trinomial group testing model proposed by Bar-Lev et al. (2005).
We compared a relative efficience (RE) based on the mean squared error
(MSE) of MLE and Bayes estimators with various prior information. The
impact of different prior specifications on the estimates is also investigated
using selected prior distribution. The impact of different priors on the Bayes
estimates is modest when the sample size and group size are large.

Keywords: Group testing; trinomial distribution; interval estimator; Bayesian; Dirichlet
distribution.

1. Introduction

Group testing problem was originally suggested by Dorfman (1943) and stud-
ied in screening large populations for diseases. Group testing is a cost-efficient
way to obtain a lot of information in a short amount of time and efforts. If the
number of individuals to be tested is quite large, we expect that the cost of test-
ing will also be large. Group testing is the best way to reduce the number of test
needed to screen everyone and thereby reduce the costs. Instead of testing each
item, observations are made on groups of item polled together with group size
s> 1.

In most applications, the group response is binary, classified as either non-
infected or infected. Although we often encounters dichotomous items, item
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responses may also be categorical. Kumar (1970a, 1970b, 1972) formulated the
multinomial group testing problem, which is a generalization of the binomial.
Under the assumption that a probability distribution on the number of defective
items exists, multinomial probability group testing models have been considered
by Hughes-Oliver and Rosenberger (2000), Xie et al. (2001), Zhu et al. (2001) and
Pfeifier et al. (2002). However, Maximum likelihood often becomes prohibitive
for small sample sizes due to unreasonable results.

To overcome MLE problem, we suggest a Bayesian framework for multinomial
group testing model. In the Bayesian approach, the parameter to be estimated
is considered a random variable that follows prior distribution. By taking into
account the prior information for the unknown parameter in the estimation pro-
cess, Bayesian estimation is expected to improve the accuracy of the estimated
value, especially when the sample size is small, a case in which the maximum
likelihood estimation procedure usually does not work well (Tebbs et al., 2003).
The prior distribution is typically specified by subjective way based on personal
belief either from experience with the parameter or from the statistical proper-
ties of the parameter to be estimated. Although the Bayesian approach has often
been criticized because of the subjective nature of its prior selection, Chaubey
and Li (1995) used a two-parameter Beta prior distribution for p and derive the
Bayes estimator using a squared error loss function. Chick (1996) also used a
two-parameter Beta prior for p and considered the use of unequal group sizes.
Kwon (2004) recently suggest Bayes estimators in binomial group testing with
beta and uniform priors. However, neither of them addresses Bayesian estimation
of the parameter in the context of multinomial group testing design.

Bar-Lev et al. (2005) recently proposed multinomial probability group testing
which assumes that all pooled items has none or some of k attributes, one of them
causing contamination. Estimation of proportions in the Bar-Lev et al. (2005)
model is derived by MLE approach. In group testing problem, ML estimates may
lie outside the boundary of the parameter space or are typically more extreme
(or can be zero) than the Bayes estimates for rare traits (Tebbs et al., 2003).

In this paper, we propose a Bayesian inference methods for the parameters of
a multinomial group testing model based on Bar-Lev et al. (2005) model. The
rest of the article is arranged as follows. Section 2 gives a short review of Bar-Lev
et al. (2005) multinomial group testing. In Section 3, we derive a joint posterior
distribution for Bayesian trinomial group testing model and its credible interval.
A small simulation described to compare MLE and Bayes estimator in terms of
relative efficiency (RE) in Section 4. Conclusions in Section 5.
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2. Preliminaries

Recently Bar-Lev et al. (2005) proposed multinomial group testing model
which deals with more than two category responses. Bar-Lev et al. (2005)
focus on choosing an optimal group size for pooled screening so as to collect
pre-specified numbers of items of the various types with minimum testing expen-
ditures and derived exact results for the underlying distributions of the stopping
times. They provided the probabilities of the group types for multinomial group
testing. Let us review briefly Bar-Lev et al. (2005) approach.

In their work, they used the k attributes A;,..., Ax and fix the group size
s. The random vector (Z;, ..., Z;) consists of ones and zeroes as follows, for a
given group,

7. _ 1, if the 5** item in the group possesses attribute Aj, i=12,...k,
Y7010, ifit does not.

Let By be the event that none of the attributes is shown in the group and
By,,...,z, be the event that the attributes Ay, ..., Az, are shown in at least one
item of the given group while the other attributes are not shown in all items
for 1 > h > k and distinct indices 1 < s; < -+ < sp < k. They denote the
probabilities of By and By, . ., as follows

P(Bo) = P(Zi;) =0 ¥i,Jj,
)

P(Bg,..2,) = P (Z Zig; 21 for j=1,...,h,

i=1
ZZW:O for = ¢ {xl,...,xh}).
i=1

Since the presence of attribute z; contaminates a group, they can combine
all types containing z, into one, hence, they distinguish between the I = 2k-1 41
types as follows

BO)

B:t1,...,.’1)h7 1Sh§k“1, 1Sw1<"'<$hsk-‘1, (2.1)
k—1

B, = h=0 UlSl‘1<~--<whSk—1 le,...,zh,ka

where By in (2.1) is purly clean which means of the attributes is present in
gorup. Second types in (2.1) are the clean ones containing the at least one of the
attributes z1,...,zx—1, and third type in (2.1) is the contaminated one.



84 Tae-Young Heo and Jong-Min Kim

Every item can have any combination of attributes independently of the other
items. Usually, the population prevalence rate of contaminated items is much
smaller than those of the clean types taken together. The occurrence of the &
attributes Ay, ..., Ag in an item can be assumed to be independent. In this paper,
we denote by p; the probability that an item possesses attribute i.

They provided the probabilities of the By, B, ... z, , B; as follows, by indepen-
dent assumption,

P(Bo) = P(Zi; =0)° =T, pt,

j=1

P(ler"yzh) = Hj¢{$1,...,$h} pj an:l(l - pzm)s,
P(By) = 1—p;.

Under the multinomial group testing of Bar-Lev et al. (2005), m is the case
when there is no element for attribute present, w2 is the case when there is an
element for attribute 1 but not for attribute 2 present, 73 is the case when there
is an element for attribute 2 present for trinomial model. In this paper, we will
focus on a trinomial group testing model which is concerned with classification
of N given units into one of three disjoint categories. Assume that the attributes
are independently distributed in the population. For a group test of size s, we
obtain the probabilities of the three different categories for trinomial distribution
as follows:

m = (1-p1)°(1 — p2)°,
me = (1 —p2)°[1 = (1 — p1)°],
3 = 1—(1—p2)°,

where 71 + m3 + 13 = 1. By using invariant property of MLE, the ML estimates
of po, p1,p2 are given by

- P ni+ny \: n o\
Po pL—pe ni + ng + ng ni + ng

~ 1 1
~ 2 s n s
P 1—7T3 n1 + ng

. 1 ni+n2 \s
=1-(1-7 s=1—(—)
P2 ( 3) ny + ng 4+ ng

where ) = n1/n, T2 = na/n, and T3 = ng/n. For example, assuming no testing
errors, N3, has a binomial distribution with parameter n and 1 — (1 — p2)®. For
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interval estimation, the confidence intervals to the group testing model is given by

B2 & 2a20/ Var(Ba)/n, where Var(py) = {1 — (1 - $2) (1 — $2)>~*/s® and 745

denotes the upper a/2 percentile of the standard normal distribution.

3. Bayesain Inference for Trinomial Group Testing

Bayesian methods have not been extensively used in group testing problem.
The ultimate goal of this study is to improve procedure for estimating the pa-
rameters in group testing model using Bar-Lev et al. (2005) model. We now
introduce the Bayesian trinomial group testing estimation problem which is more
applicable in practice.

In this study, we will formally introduce the Bayesian method in a general
framework but we will focus on a trinomial group testing model which is con-
cerned with classification each of N given units into one of three disjoint cat-
egories. Note that in many cases, it is not easy to calculate the desired joint
posterior distribution using analytical method. In our work, we analytically de-
rived the joint and marginal posterior distribution for multinomial group testing
model. Bayesian estimators typically provide more accurate results with less
bias and smaller mean squared errors (MSE) between the true and the estimated
values than the maximum likelihood estimators with proper prior information.

We denote by p; the probability that an item possesses attribute ¢ and
Z?zl p; = 1. We assume that the attributes are fixed and iid Bernoulli(p;)
random variables, 0 < p; < 1 and a common group size s. We assume that the
response vector (Y;1,Yse,...,Y;s) for item ¢ with ¢ = 1,2,...,n and for attribute
7y 3 =1,2,3 consisting of zero and one, in addition to that we consider vectors
having at least one non zero entry. To formally introduce group testing problem,
we need to fix the group size s. Therefore N = (N1, N2, N3) has a trinomial
distribution with parameters n and II = (71, 72, 73) in section 2. Therefore, the
likelihood function of N given that II = (71, 7, w3) is

I

z—l n; i=1

Faa(Rlr) =

The number of defective groups, N = (N7, N2, N3), has a multinomial distri-
bution with parameters 7 = (ny, ng, n3) and # = (w1, 72, 73). Thus, the likelihood
for trinomial distribution of group testing problem can be expressed as

fra(@lT) =

n!

1-—- — n—ni—nz
nilngl(n —ng — n2)|771 o2 (1 — m — mp) ,
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where m; + 3 + 73 =1 and n = n; + ng + ng.

In order to complete the model specification from a Bayesian framework, we
specify a joint prior distribution for all parameter of the model. In this work, we
adopted Dirichlet distribution as a prior information. In order to fully specify
the Bayesian model, Dirichlet priors are assigned to the m;,5 = 1,2,3, i.e., I ~
Dirichlet(a1, a2, a3), where «;, ¢ = 1,2,3 are the hyper-parameter of the prior
distribution. The prior distribution should express our knowledge of the model
parameters, before the data is taken into account. In many situations we do not
have any prior information, or we do not want to use it. Many approaches have
been suggested to construct these noninformative prior distributions. The first
and most obvious way to define a noninformative prior distribution of parameters
is by the Dirichlet distribution on the parameter space. The Dirichlet prior
corresponds well with our intuition about a noninformative prior. There are
several advantages of incorporating the Dirichlet distribution in trinomial set
up. First, Dirichlet distribution is a conjugate family of trinomial distribution.
Second, Dirichlet prior & = (a1, a2, ar3) is appropriate for small p, since for large
value of a, the majority of the probability distribution of the random variable is
closed to zero. Third, estimates derived using Dirichlet prior are consistent, and
can be computed efficiently by conjugate property.

The Dirichelt prior is given by

&) = F(a) a;—1,_az—1 a—a1—oaz—1
1) = et —m—an | E M) ’
for values of a = ?:1 «;. The joint distribution of N and #, conditioned on &,

is given by
fN,P(ﬁ’ﬂ&) = fﬁ|ﬁ(ﬁ|fr) - f7(7|@).
Using transformation with 7y = (1 — p1)*(1 — p2)®, m2 = (1 — p2)°[1 — (1 — p)°],

and 73 = [1 — (1 — p3)*] so that II = (m, w2, 73), the joint distribution of N and
P, conditioned on &, is given by
f11.5(,51&) = Fiy(AlF) - £5(518) - 1],
for 0 < p1, p2 < 1 and the Jacobian is |J| = |s?(1 — p1)*~'(1 — pz)*>*~!|. The
marginal distribution of N can be represented by the product of gamma function
(not shown in paper).
The joint posterior distribution is given by
fx.p(R, pla)
fam@ln, &) = —————
P|N( l ) fN(nla)
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The joint posterior distribution is a product of the joint prior distribution
and the likelihood function. We obtain analytically the marginal posterior dis-
tribution by integration over some parameters. This joint posterior distribution
is all that is needed to make inference about the unknown parameters. The full
conditional distributions are derived from the joint posterior distribution. The
final full conditional distribution for proportion p; is given by

sT(ny + ne + o + a2)
I‘(nl + al)F(ng + a2)

fp a(Pr1lf, @) = (1= pp)*(mFea=3)[1 = (1 — py)*](r2+ee—1)

and, in the same manner, py is given by

sl'(n+ a)
I‘(nl +n9+ o +a2)1‘(n—n1 —neot+ou—om —ag)
X(l _ p2)s(n1+n2+a1+a2—%)[1 _ (1 _ p2)s](n—n1—n2+a—a1—az—l).

fP2|N(p2|ﬁa &) =

With fPi| 5(pili, &) and a given loss function, say, L(p;,a), (where a denotes the
action taken), the Bayes estimate of p; with respect to L(p;,a) is the value of a
that minimizes

1
BIL(Pua)lid) = [ L) oyl 8

for ¢ = 1,2. For the remainder of this section, and for all comparisons in Section
4, only squared-error loss is considered; i.e., L{p;, a) = (p;—a)?, so that the Bayes
estimate of p; is the mean of posterior fp, ~(pi|fi,&). A closed-form expression
for pp,, the mean of the posterior, is given by

Beta(ng + a1 + 1, n + az)
Beta(n; + a1, n2 + a2)

B, =1

where Beta(a, 8) = I'()I'(8)/T'(a + B) with I" denote gamma, function. Similarly
a closed-form expression for pp,, the mean of the posterior, is given by

Beta(n1+n2+a1+a2+%,n—-n1—n2+a~a1—ag)
Beta(ni +ng + a1 +az,n—ny —ng +a — o — az)

pPB, =

3.1. Credible Intervals

In the group testing literature, methods for confidence intervals construction
have not been studied extensively. Thompson (1962) provide an approximate
confidence intervals for the population proportion of viruliferous insects, based
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on the exact variance and Student-t approach. The predominant strategy is to use
approximate Wald-type confidence intervals, based on the normal distribution,
using the asymptotic variance of pyy;, for ¢ = 1,2. Straightforward calculations
show this interval is given by

~ {1 - (1 —pm)*H1 —pwm,)*°
bm; + z%\/ ns?

’

where 2, /; denotes the upper o/2 percentile of the standard normal distribution.
Alternatively, by constructing the exact posterior distribution, we may obtain
the interval estimates of parameter by locating the a/2 and 1 — /2 quantiles of
the relevant Beta distribution, or by the method of highest prior density (HPD).
For parameter, we calculate a 100(1 — )% credible intervals for p, as follows
Up,
fp,x (pilfi, @)dpi = 1 — a,

Py
where 0 < Ly, < Up, < 1 for i = 1,2. We denote credible interval by (Ly,, Up,),
in practice, L,, and Up, may be determined using an equal-tail credible interval
(95% equal-tail credible interval). In this study, we can find a nice closed-form
expression for the equal-tail credible interval. The lower bound (LB) of p; may
find by solving following equation

o Loy | L
bl = A fp1|1\7(p1|n, &)dp,

and obtain Ly, = 1 — {1 — [Beta(a/2;n3 + ag,n1 + c1)]*/*}. Similar to L,,, we
obtain Uy, as Up, =1 — {1 — [Beta{l — (a/2);n2 + a2, n1 + a1 }]*/*}.

In the same manner, the lower bound for pp,, L,, = 1 — [Beta(a/2;n —
ny—Ne+oa—a) —oag,n +ns+ag+ ag)]l/s. Similar to Ly,, we obtain Up, as
Up, =1— [Beta{l — (a/2)in—n1 —na+a—a; —ag,n; +ng+ oy + az}]l/s.

4. Comparison of Two Estimators

In this Section, we are investigating several different Bayes estimators pg
based on different prior information and maximum likelihood estimators, py, in
order to assess the impact due to prior information by small simulation. The
performance of an estimator may be evaluated by relative efficiency

~ ~ MSE(n
RE(pwm, to pB,) = m‘((%%)l-
2
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For p fixed, the exact mean squared error(MSE) of pg,, is given by

MSE(ﬁBz) = EIV|I3 [(ﬁBz _p2)2]
= ;(ﬁBz - p2)2 X (T;) 1- (1 _ p)s]t(l _ p)s(n~t).

For various setting of values of (a1, o, a3) and sample size n = 50, 200, 375
considered in small simulation. If we do not know the values of o;; for: = 1,2,3 or
some equivalent information, we may either put priors on the hyper-parameters,
or one may adopt an empirical Bayes approach. In many cases it is desirable to
select a so called noninformative prior in order to reduce the impact of the prior
on the results of the analysis.

Kwon (2004) points that group testing is most useful when p is small and
should be considered only in such cases, the distribution of p seen in group testing
applications strongly skewed to the right, with p almost certainly < 0.3 and
usually < 0.05 in binary group testing model. In trinomial case also similar facts
that pz should be small to ensure the usefulness. To set the hyper parameters
in Dirichlet prior to see the impact of prior information, we consider several
possible sets of hyper-parameters, two cases all marginal priors are derived from
a symmetric Dirichlet distribution (all parameters taking common value) for the
model. For the first prior, o; = 1, and for the second prior a; = 1/2 (called
Jeffreys’ prior). The other cases for informative prior were used to see how change
the relative efficiency (RE) as hyper-parameter changes in prior distribution.

The effect of the prior is examined in terms of RE. Table 4.1 shows the values
of parameter estimates and RE(pym, to pp,) and illustrates that the posterior dis-
tribution is relatively sensitive to the choice of prior distribution. The magnitude
of the different between the MSE of pp, and pv, depends on the impact on the
prior distribution.

The more informative the prior distribution, the more the parameter estimate
tends to be pulled toward the center of its prior distribution, and the greater
the impact of the prior on the pg,. The impact of prior distribution tended to
become less intense as the sample size and group size became larger. These results
demonstrate that a poorly specified prior can severely bias the pg by pulling them
to the wrong center, particularly when the sample size is not large. Interestingly,
when ps is small, RE is not good for noninformative and Jeffrey’s prior, but good
for Dirichlet(5, 1, 1). When po is small, lower bounds for the MLE can be negative
where is out of parameter space that makes the MLE better than Bayes estimator
in some small py. Dirichlet(5, 1, 1) and Dirichlet(1, 5, 1) provide the same RE
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Table 4.1: Comparison of pg, and Py, in terms of the relative efficiency

RE(pm, to Ps,) n = 100 n =375 n = 500
Prevalence s=5 s=10 s=5 s=10 s=5 s=10
Dirichlet(1,1,1)
p2 = 0.01 0.888 0.967 0.966 0.990 0.974 0.992
p2 = 0.02 0.971 1.015 0.991 1.004 0.994 1.003
p2 = 0.05 1.030 1.054 1.008 1.016 1.007 1.012
p2 = 0.10 1.056 1.088 1.015 1.024 1.011 1.018
p2 =0.20 1.086 1.267 1.022 1.057 1.016 1.042
Dirichlet(0.5,0.5,0.5)
pz = 0.01 0.970 0.991 0.991 0.997 0.974 0.998
p2 = 0.02 0.994 1.005 0.998 1.001 0.994 1.001
p2 = 0.05 1.013 1.021 1.003 1.005 1.007 1.004
p2 = 0.10 1.022 1.040 1.006 1.010 1.011  1.008
p2 = 0.20 1.039 1.153 1.010 1.031 1.016 1.023
Dirichlet(5,1,1)
p2 = 0.01 1.021 1.107 1.005 1.028 1.004 1.021
p2 = 0.02 1.110 1.141 1.029 1.036 1.021 1.027
p2 = 0.05 1.131 1.068 1.034 1.018 1.026 1.013
p2 =0.10 1.065 0.907 1.017 0.967 1.013 0.974
p2 =0.20 0.894 0.620 0.963 0.797 0.972 0.834
Dirichlet(1,5,1) '
p2 = 0.01 1.021 1.107 1.005 1.028 1.004 1.021
p2 = 0.02 1.110 1.141 1.029 1.036 1.021  1.027
p2 = 0.05 1.131 1.068 1.034 1.018 1.026 1.013
p2 = 0.10 1.065 0.907 1.017  0.967 1.013 0.974
p—-2=1020 0.894 0.620 0.963 0.797 0.972 0.834
Dirichlet(1,1,5)
p2 = 0.01 0.191 0.333 0.452 0.635 0.522 0.697
p2 = 0.02 0.337 0.535 0.639 0.800 0.701 0.841
p2 = 0.05 0.686 0.904 0.883 0.969 0.909 0.976
p2 = 0.10 0.898 1.085 0.967 1.021 0.975 1.016
p2 = 0.20 1.082 1.360 1.021 1.076 1.016 1.056
Dirichlet(5,5,5)
pe = 0.01 0.256 0.498 0.517 0.753 0.584 0.800
p2 = 0.02 0.504 0.912 0.758 0.965 0.804 0.973
p2 = 0.05 1.201  1.267 1.052 1.070 1.039 1.052
p2 = 0.10 1.281 0.781 1.073 0.905 1.054 0.925
p2 = 0.20 0.791 0.350 0.912 0.522 0.931 0.578

results because of the feature of pp,. As the prior became further away from the
distribution of true parameter in terms of the shape of the distribution density
function, RE tends to become smaller (see, Dirichlet(1, 1, 5) and Dirichlet(5, 5,
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5). From our small simulations, we obtain the similar results from Kwon (2004)’s
Bayesian approach binomial group testing model.

5. Discussion

The aim of this paper is essentially on deriving of closed-form Bayes estimates
of parameters based on Bar-Lev et al. (2005) multinomial group testing approach.
Bayesian approaches we present give a more flexible and reliable estimates taking
into prior information than MLE, but the impact of different prior specification
on the Bayesian estimation largely depends on the sample size and group size.
However, Bayesian approach is still recommendable to use for group testing model
since, in doing so, we obtain a reliable estimates for rate trait proportion with
appropriate prior information. We derive the credible intervals and compare
the results to perform Bayesian inference with different prior distribution for
parameter of interest for rate traits using MLE and Bayes estimator.
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