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Statistical Method of Ranking Candidate Genes for
the Biomarker*
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Abstract

Receiver operating characteristic (ROC) approach can be employed to
rank candidate genes from a microarray experiment, in particular, for the
biomarker development with the purpose of population screening of a cancer.
In the cancer microarray experiment based on n patients the researcher often
wants to compare the tumor tissue with the normal tissue within the same
individual using a common reference RNA. Ideally, this experiment produces
n pairs of microarray data. However, it is often the case that there are
missing values either in the normal or tumor tissue data. Practically, we
have n; pairs of complete observations, ny “normal only” and ns “tumor
only” data for the microarray. We refer to this data set as a mixed data
set. We develop a ROC approach on the mixed data set to rank candidate
genes for the biomarker development for the colorectal cancer screening. It
turns out that the correlation between two ranks in terms of ROC and ¢
statistics based on the top 50 genes of ROC rank is less than 0.6. This
result indicates that employing a right approach of ranking candidate genes
for the biomarker development is important for the allocation of resources.
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1. Introduction

Microarray technology holds the promise of becoming a new advance in mod-
ern cancer research and clinical diagnostics with its potential to quantitatively
measure the expression levels of thousands of genes simultaneously. There are two
types of a microarray; the single channel array, of which the Affymetrix system
is the most predominant, and the dual channel array which includes a spotted
c¢DNA microarray or a spotted oligonucleotide microarray. Here we focus on the
c¢DNA microarray. One of the characterizing properties of cDNA microarray data
is that it is subject to substantial variability, hence it is essential for the experi-
menter to carefully plan the experimental design driven by the study objective.
For example, when using a cDNA array one must decide on a design for allocating
specimens to labels and to array. The most commonly used design uses an aliquot
of a reference RNA as one of the specimens for each array. This design is often
referred to as a reference design or an indirect design. For most cancer microarray
experiment, as Simon et al. (2002) indicates, there is not enough material avail-
able from one individual to create multiple arrays and thus the reference design
would be the design of the choice. It is also a common practice in the cancer
microarray experiment that a normal tissue is collected during the surgery from
the same individual from which the tumor tissue was taken. The major reason
of doing this is that it is not easy for the experimenter to collect normal tissues
from healthy individuals. We observe that this practice of observing a matched
pair adds a merit from a statistical aspect. For example, by observing a matched
pair from a same individual one can reduce the inter-individual variability. It is
often the case, however, that the experimenter can’t extract enough RNA either
from the tumor or the normal tissue to perform the microarray experiment due
to poor quality of the tissue or other technical reasons. Therefore, collecting n
cases does not necessarily end up with a matched pair sample of size n. (We use
‘sample’ to denote a random sample in statistics to distinguish it from a biological
specimen.) Instead it usually consists of a matched pair sample of size n; and two
independent samples of sizes na and ng, respectively for “reference versus normal
only” and “reference versus tumor only” hybridizations (nj + nz + n3 = n). Let
X and Y denote the log fluorescent intensity ratios of reference versus normal
and reference versus tumor hybridizations, respectively, for a given gene. Let U
and V be independent copies of X and Y, respectively. Then we may observe
three data types represented in Table 1.1. We refer to this data set as a mixed
data set, as it contains a mix of fully observed and partially observed pair data.
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Table 1.1: Three data types of the experiment. X and Y represent log inten-
sity ratios for reference versus normal and reference versus tumor hybridizations,
respectively. U and V' are identically distributed with X and Y, respectively.

Hybridization
reference vs normal | reference vs tumor | Number of cases
X Y n1
U missing T2
missing \% n3

The mixed data set of Table 1.1 occurred in clinical practice, particularly in the
microarray experiment using human tissues (Xim et al., 2005)
For handling the mixed data set of Table 1.1, standard procedures like the ¢
statistic need to be modified properly. Kim et al. (2005) developed a t—based
statistic as a means of combining all the data in the mixed data set when they
detected differentially expressed (DE) genes between normal and tumor tissues.
The goal of the cancer screening is to detect tumors at an early stage so
that the treatment is likely to be successful. Furthermore, it is essential that
the screening tool is noninvasive and inexpensive to allow widespread application
to the population. Another important aspect of the population screening of a
cancer is that the screening tool maintains the low false positive rates. Even a
small false positive rate translates into a large number of healthy people subject
to diagnostic procedures that are unnecessary, costly and sometimes invasive.
The aim of this note is to modify and extend the receiver operating characteristic
(ROC) approach given the data set of Table 1.1. We then use the modified ROC
approach to rank candidate genes that can be used for the biomarker development
with the purpose of the population screening of a cancer.

2. Materials and Methods

2.1. Experiment and Data Pre-processing

Fresh specimens of cancer and normal tissues from each of 87 colorectal cancer
patients were obtained during surgery at Severance Hospital, Yonsei Cancer Cen-
ter, Yonsei University, College of Medicine, Seoul, Korea from May to December,
2002. These specimens were snap-frozen in liquid nitrogen right after the resec-
tion and stored at —70°C until required. The median age of 87 patients was 65
with the range of 28-90. We had 46 and 41 for males and females. Other clinical
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characteristics on location, carcinoembryonic antigen(CEA) level and stage were
reported in Kim et al. (2005).

We attempted to extract total RNAs from tumor and normal tissues from
each of 87 patients and wished to comprise a paired data set of size 87. From
each of 36 patients we had RNA specimens both for tumor and normal tissues.
However, from 19 patients RNA specimens for normal tissues only were available.
From another 32 patients RNA specimens for tumor only were obtainable. Thus,
we have a matched pair sample of size 36 and two independent samples of sizes
19 and 32. In terms of notations in Table 1.1, nq = 36, no = 19 and ng = 32. We
note that these tissues were taken by a single surgeon and there was no specific
clinical or biological meanings on these three subgroups. Therefore, we assume
that these three subgroups are independent samples from a population.

After total RNAs were extracted from fresh frozen tissues, the specimens were
labeled and hybridized to ¢cDNA microarrays based on the standard protocol
established at Cancer Metastasis Research Center, Yonsei University College of
Medicine (Park et al., 2004)

We use M = log,(R/G) for the evaluation of relative intensity, where R and
G represent the cy5 and cy3 fluorescent intensities, respectively. We first define
no missing proportion (NMP) of a gene as the proportion of valid observation
out of the total number of arrays. For example, if a gene has valid observation
for 32 arrays out of 40, its NMP is 0.8.

We normalized M values using within-print tip group, intensity dependent
normalization following Yang et al. (2002). We used 0.8 for the lower bound of
the NMP, which deleted genes containing missing values for more than 20% of
the total number of observations. We then imputed missing values employing
k—nearest neighbor (k = 10) method. We averaged values for multiple spots.
Finally, we ended up with a data set represented by 12850 x 123, where 12850
denotes the number of genes and 123 stands for the number of arrays.

2.2. Methods

We first briefly review the ROC approach when two independent random
samples are given. We then extend the ROC approach to the matched pair
sample and further to the mixed data set of Table 1.1. Comparison of ranks
of genes in terms of the ROC approach and a t—based statistic, t3 of Kim et
al. (2005) is made based on 100 bootstrap samples. We perform small scale
sensitivity analysis to investigate the stability of the ROC approach.
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Figure 2.1: Examples of ROC curves. ROC curve 1 corresponds to the perfect
gene, whereas ROC curve 4 stands for the uninformative gene. Most DE genes
have their ROC curves between these two extreme cases. Better genes have ROC
curves to the upper left corner.

We assume that {Ux};2, and {V;};2; in Table 1.1 are independent random
samples. Let U = Uy and let V = V; just for simplifying the notation. The ROC
curve is a plot of true positive versus false positive probabilities associated with
varying thresholds for U and V. Just for the simplicity we present ROC curve
for the up-regulated genes. However, the adaptation to the down-regulated gene
is straightforward. For a given threshold c the false positive probability is given
by Pr[U > ¢] = t, and the true positive probability is Pr[V > ¢] = ROC(t).
Therefore, the ROC curve consists of {(t, ROC(t));0 < t < 1}. Figure 2.1 shows
four ROC curves corresponding to four hypothetical genes. The uninformative
gene is one such that the probability distributions of expression levels are the
same in the tumor and normal tissues, which results in Pr{U > ¢] = Pr[V > (]
for any threshold value ¢. The uninformative gene is represented by “ROC curve
4” in Figure 2.1. A perfect gene on the other hand completely separates tumor
tissue from normal tissue. Its ROC curve is along the left and upper border
of the positive quadrant, which is represented by “ROC curve 1” in Figure 2.1.
Most differentially expressed (DE) genes have their ROC curves between these
two extreme cases. Better genes have ROC curves to the upper left corner. We
note that “ROC curve 2” is better than “ROC curve 3”7, because at any false
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positive value ¢ “ROC curve 2” has higher true positive probability than “ROC
curve 3” and also at any true positive probability “ROC curve 2” maintains the
smaller false positive probability than “ROC curve 3”. Therefore, better genes
have ROC curves closer to the upper left corner. Pepe et al. (2003) used empirical
estimates of ROC(tp) together with pAUC = fgo ROC(t)dt for ranking genes of
differential expression between normal and tumor tissues for a suitably chosen
to(= Pr[U > ¢g]) value which is also determined by the threshold cp.

The ROC approach is now extended to the mixed data set of Table 1.1. We
introduce some notations here. Let ROC,qir(tg), ROCina(to) and ROCpyz(to)
denote ROC values using the matched pair sample, two independent samples,
and the mixed data set of Table 1.1, respectively, for a given threshold tg, which,
in turn, is determined by cg such that t¢ = Pr[U > ¢5]. Developing a ROC
approach on the mixed data set consists of two steps. In the first step we devise
a procedure for computing ROC(tp), for a given threshold ¢y, based on the paired
data set of size n;, which ROCpq;-(to) denotes. Computation of ROC(tg) based
on two independent samples {Uz};2; and {V;};%,, denoted by ROC;n4(to), is
straightforward along the line of Pepe et al. (2003). In the second step we
properly average these two ROC values to derive ROC,,;z(to) for the mixed data
set.

Let D =Y — X and let Dy denote the hypothetical version of D under the
null hypothesis of no differential expression. The distribution of D with a mean
8o and the variance o2 is denoted by D ~ (d,,02). The distribution of Dy is
represented by Dy ~ (8o, 02). Let D denote the sample mean of D values based
on n; paired observations. We augment the D notation by adding a superscript
(g9) to represent the g-th gene. Hence DU9) denote D for the g-th gene. We omit
this superscript when the argument is based on each gene. We may note that
we don’t have any direct observations concerning the distribution of Dy. Let
ID]ay < ID|gy < ... < |D|(p) denote the order statistics of {[3@_|}Zzl, where
p is the number of genes spotted in a cDNA microarray. Let g(;) represent the
index of a gene whose |D| value corresponds to |D|(; for j = 1,...,p. We also
refer to Sg(j)(D) as the sample variance of D for the g(;-th gene based on n;
paired observations.

The essence of computing ROCpair(to) lies on estimating the baseline distri-
bution of D under the null hypothesis of no differential expression. We assume,
for simplicity, that Dy has the same pattern of distribution with D except for the
mean and variance. We expect that dg < 0, and we don’t necessarily assume that
8o = 0. We further assume that o¢ < o%. There are several ways of estimating the
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Figure 2.2: The plot of (m, > = ;n 15, )(D)) for m =1,...,500. X axis rep-

resents the rank (m) of [D| up to the 500" and Y axis indicates the average of
sample variances of D up to the m-th gene whose |D| value corresponds to the
smallest m~th rank.

distribution of Dy using the matched pair sample data. We choose a set of genes,
denoted by N, = {g;|D®)] < €} fot a small e > O The suitable choice of € can be
determined from the plot of [{m, (1/m) 371, S? ) (D)}F _;. We concluded from
the plot of Figure 2.2 that the first 100 order statistics provide information on
the non—-DE genes. Based on these 100 genes in N, we can estimate dp and 0(2,.
We derive the empirical distribution of D based on {D;}3¢,, which the density of
D in Figure 2.3 represents. We then shift the mean and adjust the scale of D by
multiplying the factor op/0, so that Dy = (D — 8,)(00/04) + 6o has mean §p and
variance o2. This results in a null hypothesis distribution of D represented by
the density of Dy in Figure 2.3. We finally proceed the calculation of ROCpqr(to)
as is illustrated in Figure 2.3.

Once ROCpair(to) and ROC;nq4(to) are determined we may average these two
ROC values to get ROC,,;x(to). The initial idea was using the weighted mean
of these two ROC’s where the weights were proportional to the inverse of their
variances. For calculating the variance of ROC;4(t9) we attempted using Re-
sult 5.1 of Pepe (2003). We noted that Result 5.1 of Pepe (2003) didn’t work
out for computing variance of ROC;,4(ts), because for some genes which well
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Figure 2.3: Schematic plot of calculating ROCpair(1/36) of a gene (transient
receptor potential channel 3, AI655379, the 37¢ gene in terms of ROC; in
Table 3.1) based on the paired data set of size 36. ROCp,;, in Table 3.1 is a
weighted mean of ROCp,;,(1/36) and ROC;,4(1/36).

separated two distributions Equation (5.2) of Pepe (2003) involved division by
zero. We attempted employing bootstrap method for calculating the variance
of ROCpair(to). However, for some of genes which well separated distributions
of normal and tumor tissues, we observed that zero variances occurred when we
performed bootstrap procedure for calculating the variance of ROCpair(to). As
an alternative we used the weighted average of Equation (2.1) to get ROC,2(to),
where the weights were adopted from ¢3 statistic of Equation (2.2).

Then we use the following weighted average to get ROCp;(t0);

_ mROCpgir(to) + nrROCing(to)

where ng is the harmonic mean of ny and n3. We also use a newly developed
t—based statistic, ¢3, of Equation (2.2) for detecting DE genes in a mixed data
set of Table 1 (Kim et al., 2005).
D V-U
tg = nil+ nH( ) : (2_2)
JiSh + (e h + £.57)
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52, S% and S%, are sample variances of D, U, and V, respectively, and ny,
is the harmonic mean of ny and ns. The central limit theorem can be invoked
to approximate the null distribution of ¢3 in Equation (2.2) by N(0,1). We then
compare the ranks of genes in terms of ROC,,;; against the ranks in terms of t3
statistic.

We generated 100 bootstrap samples from the mixed data set of Table 1.1
and computed ROC,,;, and t3 statistics for each sample. ROC,ix_toot a0d £3_poot
represent averages of these two statistics based on 100 bootstrap samples.

Actual sample sizes of the mixed data set of Table 1.1 are n; = 36, ns = 19
and ng = 32. These small sample sizes may raise a concern on the stability of
ROC approach, in particular, for ranking candidate genes for the biomarker. We
carried out a sensitivity analysis of the ROC approach based on aforementioned
100 bootstrap samples. Let ROC, iz poot(to) denote the average of ROCp,iz(to)
values based on 100 bootstrap samples for a given threshold tg.

We report in Results section the top 50 genes ranked in terms of ROC ap-
proach based on a cDNA microarray experiment of 87 colorectal cancers.

3. Result

One can determine the false positive probability to = Pr[U > ¢] in the base-
line (nontumor) distribution very small, in particular, in the context of cancer
screening. However, due to small sample sizes, the estimation of ROC(¢p) at very
small g is not possible. Thus, one needed to compromise in the real application,
as Pepe et al. (2003) indicated, with the choice of ¢y such that it was small, but
large enough to make ROC(tp) reasonably precise. We chose to to be 1/36.

Table 3.1 shows the list of top 50 genes in terms of ROCp,;;(1/36), another
top 50 genes in terms of ROC iz poot(1/36), their corresponding ranks in terms
of t3 and t3_poos Statistics. Two sets of top 50 genes in terms of ROC,,;, and
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Table 3.1: The top fifty genes in terms of ROC,,;;(1/36) and their corresponding
ranks and values in terms of other statistics including ROC iz_poot(1/36), t3, and

t3_boot Statistics. Two sets of top 50 genes in terms of ROC,,;z and ROC iz _boot
procedures overlap 47 genes. The bottom three genes are included to list up the
top fifty genes in terms of ROC,,iz_boot(1/36).

Rank in Rank in
terms of terms of
TR0 [ fO0or|  Gone Name Gene 14 |BQC| ROG,,| *s | t-b0ot [13] Fs-voor
ATP-binding cassette,
1.5¢ 1 sub-family A (ABC1), AA634308/1.000 1.000 —23.930) —24.379] 2 2
member 8
solute carrier family 4,
1.5 2 sodium bicarbonate AA452278)1.000] 0.993 —19.399|-19.842|14 12
cotransporter, member 4
transient receptor
4.0 3 potential channel 3 Al655379 [0.983| 0.986 —25.108 | —26.012| 1 1
endothelial cell-spe
4.0 4 cific molecule 1 ‘W46577 10.983| 0.981 21.124 | 21.803 | 5 5
stromal cell-
4.0 [ derived factor 1 Al655374 |0.983| 0.972 —18.515]| —19.017| 25 25
tetraspan transmemb
6.5 8 rane 4 super family AA046527|0.975| 0.970 20.666 | 21.334 | 7 7
ets variant gene 4
6.5 5 (E1A enhancer-binding | AA010400{0.975| 0.975 20.030 | 20.607 |10 10
protein, E1AF)
cadherin 3, type 1,
9.5 12 P-cadherin (placental) AA425217|0.971 0.960 21.304 | 22.172 | 4 4
chromogranin A
9.5 9 (parathyroid secretory AA976699[0.971 0.969 —18.701]—19.157 (23 23
protein 1)
transmembrane 4
9.5 11 superfamily member 2 N93505 10.971| 0.962 —18.181|—18.650| 28 28
9.5 7 carbonic anhydrase 11 H23187 |0.971| 0.972 —17.341[—17.721 145 40
nuclear factor (erythroid
12.5 10 —derived 2)-like 3 W76339 [0.963| 0.965 22.929 | 23.338 | 3 3
matrix metallo
12.5 18 proteinase 11 AA954935|0.963( 0.952 15.605 | 15.953 |99 98
(stromelysin 3)
nhibin, beta A
14.0 13 (activin A, activin AB Al925826 | 0.958 0.960 17.881 18.061 |36 31
alpha polypeptide)
16.0 14 somatostatin R51912 |0.954 0.957 | -20.647| —21.473| 6 8
extracellular link
16.0 17 domain-containing 1 AAT04407|0.954 0.953 -20.220|—20.849| 9 9
hypothetical
16.0 15 protein FLJ21511 Al1373245 |0.954( 0.956 —17.059(~—17.393 ({52 50
18.5 29 B-cell CLL/lymphoma 2 | W63749 [0.950] 0.922 —17.774| ~18.241}33 36
18.5 20 carbonic anhydrase I R93176 |0.950 0.943 —16.088| —16.281 |91 77
matrix metalloproteinase
21.0 19 7 (matrilysin, uterine) AA031514]0.946 0.945 19.332 19.641 |18 13
integral membrane
21.0 16 protein 2A AAT775257]0.946 0.955 —18.661|—19.254 |22 24
wingless-type MMTV
21.0 24 integration site W49672 | 0.946 0.937 16.909 17.726 |44 53
family, member 5A
Kruppel-like
23.5 22 factor 4 (gut) H45668 |0.942 0.939 —19.118 | -19.698 |16 16
tryptophan hydroxylase
23.5 28 (tryptophan 5- AA702193(0.942 0.925 —16.640 | —17.465| 49 61
monooxygenase)
25.0 25 CDC28 protein kinase 2 | AA397813]0.933 0.931 18.958 19.113 24 19
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UDP-glucose

26.5 44 dehydrogenase AA454086(0.929| 0.882 —19.943| —20.336 | 11 11
26.5 21 ESTs R31701 [0.929] 0.940 17.774 | 17.894 |40 35
tryptophan hydroxylase
29.0 23 (tryptophan AA975820|0.925( 0.937 |[-19.105(—19.885(13 17
5-monooxygenase) Al733159
dyskeratosis
29.0 42 congenita 1, dyskerin AA052960|0.925 0.885 18.194 18.761 |27 27
fucosidase, alpha
29.0 40 —L-1, tissue N95761 {0.925| 0.888 |-—18.073|-18.548|29 29
32.0 26 carbonic anhydrase XII |AA171613{0.921| 0.928 |-16.782|-17.339|53 57
32.0 27 glucagon AT955772|10.921] 0.926 |—16.393|—16.884|66 69
serine/threonine
32.0 31 kinase 15 R19158 |0.921| 0.913 15.613 | 15.967 |98 97
34.0 30 No data ‘W80637 [0.917{ 0.916 19.025 | 19.688 |17 18
sushi-repeat—
35.5 35 containing protein, AA449715(0.913 0.892 —17.558 | —18.284 32 37
X chromosome
ESTs, Moderately
35.5 33 similar to A40493 DNA | AI337434 |0.913( 0.902 16.071 | 16.745 |71 79
topoisomerase [H.sapiens]
procollagen (type III)
37.0 43 N-endopeptidase H98666 |0.908| 0.882 17.120 | 17.595 |47 48
ectonucleoside
39.0 39 triphosphate AI017442 | 0.904 0.890 |-16.233|—16.864 |67 73
diphosphohydrolase 5
proteelipid protein
39.0 38 (Pelizaeus—Merzbacher R45264 {0.904| 0.890 |-—16.210|-—16.565|78 74
disease, spastic paraplegia
2, uncomplicated)
peptide YY,
39.0 32 2 (seminalplasmin) Al342688 [0.904] 0.907 —16.115| —17.002 | 62 76
chaperonin containing
41.0 37 TCP1, subunit 5 AA629692|0.900] 0.891 20.908 | 21.278 | 8 6
(epsilon)
cytoskeleton
42.0 59 associated protein 2 AA504130|0.896| 0.843 16.671 | 17.041 |60 60
8100 calcium—binding
44.0 34 protein A1l (calgizzarin) | AA464731|0.892 0.900 17.328 17.876 (42 41
tryptophan hydroxylase
44.0 47 (tryptophan AI701018 | 0.892 0.879 —15.9951{—16.648 | 76 84
5-monooxygenase)
44.0 41 carboxypeptidase M AI367796 | 0.892 0.886 —15.650{ —16.485 | 81 94
46.0 49 sorbitol dehydrogenase |AA700604|0.888| 0.868 17.452 17.889 |41 39
bone morphogenetic
48.0 57 protein 2 AI569017 {0.883]| 0.845 |—16.511|—17.096|58 64
prostaglandin D2
48.0 45 synthase, hematopoietic | AI206447 | 0.883 0.880 —16.473| —16.759 | 70 65
48.0 36 matrilin 2 AA071473]/0.883] 0.892 |—16.014[—16.097|94 83
minichromosome
50.0 52 maintenance deficient AI669374 | 0.879 0.860 17.516 18.062 |35 38
(S.cerevisiae) 3
LBLE . ESTs AAARLOB8 108751 D&y 18.746
iblguitin carrier : - ’
1 protein B2.C AA430504]0.846] 0.877
. | matrix metalloproteinase .
T8 3 (stmmétysin 1 WE5IT94 10808} - 0.866

progelatinase)

*The average is taken for tied ranks

179

ROC 1iz_boot have 47 genes in common. Thus, Table 3.1 contains 53 genes and
these genes are sorted by ROC,,;, values. We also note that 34 genes overlap

between two sets of top 50 genes in terms of ROC,,;, and t3 statistics. This

overlap proportion is in parallel with Pepe et al. (2003), which reports 8 over-
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Table 3.2: Correlations among four ranks in terms of ROC, iz, ROC iz boot, t3,
and 3 3.0t based on top 50 genes of ROC, ;..

ROCmiz | ROCriz_boot t3
ROC niz_boot 0.923
t3 0.570 0.517
t3_boot 0.543 0.485 0.983

lapping genes between two sets of top 10 genes in terms of ROC and two sample
t statistics.

Correlations among four sets of ranks in Table 3.1 are given in Table 3.2. We
observed a correlation coefficient of 0.570 between two sets of ranks in terms of
ROC,,;z and t3 based on the top 50 genes of ROC,,;,. We note even smaller
correlation (0.517) between these two sets of ranks based on the top 50 genes in
terms of ¢3 statistic (data not shown). We may note that t3 statistics is less sensi-
tive to the sampling variability than ROC,,;;. We may recall that ROC approach
ranks genes based on the true positive probability (ROC(ty)) corresponding to
the fixed small false positive probability to. Therefore, it was expected that ROC
approach was more sensitive to the sampling variation than t3 statistic, because
ROC approach for ranking candidate genes ignored much of the information in
the ROC curves, namely, ROC curves beyond ¢ > tg.

Among the selected genes, several genes were reported to relate with car-
cinogenesis and colorectal cancer. CXCR4_AI655374 (Ottaiano et al., 2004) and
CKS2_AA397813 (Li et al., 2004) were significantly over—expressed in cancer-
ous type (carcinomas and metastasis) compared to non—cancerous type. Several
members of the S100 protein family of calcium-binding proteins (two isoforms
of S100A9, S100A8, S100A11_AA464731 (Stulik et al., 1999) and S100A6) were
up-regulated in transformed colon mucosa. Meanwhile, SST_R51912 is known to
induce cell apoptosis of large intestine cancer and inhibit cell proliferation (Mao
et al., 2005). Bone morphogenic protein 2(BMP2_AI569017) inhibits the colonic
epithelial cell growth in vitro by promoting apoptosis and inhibiting proliferation
(Hardwick et al., 2004). ROC,,,;,

4. Discussion and Conclusion

We have extended the ROC approach for ranking candidate genes for the
biomarker development which is applicable to the mixed data set of microarray
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experiment performed on human caner and normal tissues. The mixed data
set of Table 1.1 occurs quite often in clinical practice when the tissue material
is not large enough to yield the adequate amount of RNA for undergoing the
DNA microarray experiment. There is a possibility that the ROC approach, in
general, and the ranking the genes, in particular, might be sensitive due to the
small sample size. We conducted a small sensitivity study of this ROC approach
by random sampling. The high correlation coefficient of 0.923 between two sets of
ranks in terms of ROC,,.;; and ROC,, ;2 peot in Table 3.2 indicated that even with
this small sample size we could find a small set of DE genes which well separated
tumor and nonturmor.

It was already shown that ROC approach was better than the classic measures
of discrimination such as t statistic or Mann—Whitney U statistic in ranking
candidate genes for the biomarker development for the purpose of the population
screening of cancer (Pepe et al., 2001, 2003). We observed that the correlation
between two sets of ranks in terms of ¢ statistic and ROC based on the top
50 ROC ranked genes was less than 0.6. Our result indicates that the proper
method of ranking candidate genes, such as the ROC based approach, is quite
important in allocating resources. Therefore, investigators should carefully choose
the statistical measure for ranking the genes so that it fits the purpose of the
experiment.
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