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Local Influence of the Quasi-likelihood Estimators in
Generalized Linear Models

Kang-Mo Jung!

Abstract

We present a diagnostic method for the quasi-likelihood estimators in
generalized linear models. Since these estimators can be usually obtained
by iteratively reweighted least squares which are well known to be very sen-
sitive to unusual data, a diagnostic step is indispensable to analysis of data.
We extend the local influence approach based on the maximum likelihood
function to that on the quasi-likelihood function. Under several perturba-
tion schemes local influence diagnostics are derived. An illustrative example
is given and we compare the results provided by local influence and deletion.

Keywords: Cook’s distance; diagnostics; generalized linear models; local influence; max-
imum likelihood estimator; quasi-likelihood estimator.

1. Introduction

Generalized linear models (GLMs; Nelder and Wedderburn, 1972; McCullagh
and Nelder, 1989) are a popular method for modeling the relationship between
a discrete or continuous response variable and the predictors. However, GLM
usually requires the specification of the distribution of the response, which is be-
longing to the exponential family, and uses the maximum likelihood estimators
(MLE). It can be extended to the quasi-likelihood method with only consideration
of the link and variance functions of the model. The quasi-likelihood estimator is
an alternative to the maximum likelihood estimator when the latter is not avail-
able. In the view of estimation and inference the link, variance and independence
assumptions are more important than the distributional assumptions. So the
quasi-likelihood estimator is very useful in practice.

1) Associate Professor, Department of Informatics and Statistics, Kunsan National University,
Kunsan 573-701, Korea.
E-mail : kmjung@kunsan.ac.kr



230 Kang-Mo Jung

In GLM the MLEs are usually obtained using iteratively reweighted least
squares (IRLS), a kind of least squares estimates which is known to be sensitive
to outliers or influential observations. So are the quasi-likelihood estimates. It re-
quires a diagnostic step for a,né,lyzing data based on the quasi-likelihood method
in GLM. The diagnostics for GLM used those for Gaussian linear models, which
are the Pearson residual, the deviance residual, the hat matrix and the Cook
distance (Dobson, 2002, pp. 127-130). Since these diagnostics are single case
deletion methods, they cannot detect unusually multiple observations and over-
come the errors of masking or swamping effects. Deletion approach is a global
influence of observations on the estimates of parameters.

Cook (1986) devised the local influence method as a general diagnostic of
investigating locally the influence of observations. The local influence can be ob-
tained by perturbing the statistical model under a given weight. This approach
provides influence information about the relative impact of a given perturbation
and characterization of most influential observations. Thomas and Cook (1989)
suggested diagnostics for influence on the estimated regression coefficients in a
GLM. Lesaffre and Verbeke (1998) used local influence in linear models for in-
vestigating longitudinal data. However these two approaches are based on the
likelihood displacement. To get the local influence of the quasi-likelihood esti-
mator we need a new definition for local influence, not based on the likelihood
displacement.

In this work we investigate the influence of observations on the quasi-likelihood
estimators in GLMs. In Section 2 we review the quasi-likelihood estimator in
GLMs and introduce some notations used in this paper. We define a quasi-
likelihood displacement which is an extension of the likelihood displacement and
suggest diagnostics of the estimators of parameters using the local influence in
Section 3. In Section 4 we derive local influence measures on the quasi-likelihood
estimators in GLMs under some meaningful perturbation schemes. In Section
5 an illustrative example is given and we conduct the comparison of the local
influence measures and the deletion diagnostics.

2. Quasi-likelihood Estimators

In this section we review the quasi-likelihood estimator in GLMs.

For i = 1,...,n, let consider the model Y; = u; + ¢;, where p; = sz,B and
¢; follows N(0,02), that is, ¥; ~ N(u;,02). This normal linear model can be
extended to the GLM by Nelder and Wedderburn (1972) with the consideration
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of the non-normal response variable and the link function g(u;) = x¥' 3. However,
the GLM requires the specification of the probability distribution function for the
response variable. In case we would know only the information about the type and
moments of the response, it is not possible to construct the likelihood function by
a GLM. Wedderburn (1974) proposed an estimation method in such situations,
which is referred to as the quasi-likelihood method.

Let Y; have mean u; and variance ¢V (u;). And assume that Y;’s are inde-
pendent. Let define the random variable U; = (Y; — pi)/#V (u4;). Then we have
E(U;) =0, Var(U;) = 1/¢V (1), E(QU;/0ui) = —Var(U;). The integral

Qulsyu) = [ wi—)/8V(e)dt,
Yi

if it exists, should behave like a log-likelihood function for u;. It is called the
quasi-likelihood for p; based on data y;. Since Y;’s are independent, the quasi-
likelihood for the complete data is Q(u, y) = Y i Qi(ui, ys)- The quasi-likelihood
estimators can be obtained by minimizing the objective function @Q(u,y), that is,
finding the estimates of 3 satisfies the equation

9Q _ Tyt
0=—==D'V — 2.1
5 v - w)/d, (21)
where D = 9pu/8BT and V = diag(V(i1), ...,V (un)). Beginning with an arbi-
trary estimate ,B(O) sufficiently close to 3, the sequence of parameter estimates
generated by the Newton-Raphson method with Fisher scoring is

g =™ + (DTVID) DV y - ).

The conventional estimator of ¢ is a moment estimator based on the residual
vector y — ft, namely ¢ = Y7, (v — fu:)?/((n — p)V(i1:)). See McCullagh (1983)
and Davis (2002) for the properties and the algorithms of the quasi-likelihood
estimates.

This is an estimate of IRLS which is sensitive to outliers or influential obser-
vations. So it is indispensable to the diagnostics for the quasi-likelihood estimates
before data analysis.

3. Local Influence for Quasi-likelihood

We define a new quasi-likelihood displacement based on the maximum-
likelihood displacement (Cook, 1986) and then adapt the local influence method
to the quasi-likelihood estimates.
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Let w = (wy,...,w,)T be an n x 1 vector of small perturbations. Specific
perturbation schemes are studied in the next section. We denote the quasi-
likelihoods for the unperturbed and perturbed models by Q(3) and Q(8|w),
respectively. Similar to the maximum-likelihood displacement (Cook, 1986), we
define the quasi-likelihood displacement as

QD(w) = 2{Q(B) — Q(Bw)},

where ,5 and Bw are the quasi-likelihood estimators of 3 under the unperturbed
and perturbed models, respectively.

Let w = wg + al with ||I|| = 1 and scalar a. Here wy is called the null point
that represents no perturbation of the data or the statistical model. We con-
sidered the surface (w?,QD(w))T. Since QD(W)/0w;lw=w, = 0,i = 1,...,n
from the property of the quasi-likelihood estimator at the null point, the normal
curvature of this surface becomes

Cy = 2|1k, (3.1)
where

92
R VNI T SN (32)
w=wg
in which A = 82Q(B|w)/0B8w” is a p x n matrix evaluated at B = B and
w = Wy, Qﬂﬂ(B) = 82Q(B)/0B0B" is a p x p Hessian matrix evaluated at
B=5.

There are several ways in which (3.1) can be used to study the local influence
in practice. First we consider the extremes Cy 0 = Max 1C} which is obtained by
the maximum absolute eigenvalue of F'. The direction vector Imqq corresponding
to Cmge indicates how to perturb the postulated model to obtain the greatest
local changes in the quasi-likelihood displacement. We should pay attention to
observations corresponding to the large element of the direction vector l,,;-
Then the index plot of I, may be helpful in finding large direction cosines
of the direction vector corresponding to the maximum normal curvature of the
surface (wT,QD(w))T.

We consider another influence measure (Zhu and Zhang, 2004) for the it*
observation

¥4
Fi, = Nk (3.3)
=1
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where {(\;,7;)l7 = 1,...,n} are the eigenvalue-eigenvector pairs of F with \; >
2 A 2 M == Ay =0and {v; = (’yjl,...,'yjn)le =1,...,n} is the
associated orthonormal basis. Equation (3.3) equals almost to the i** diagonal
elements of . Thus this influence measure expresses the local sensitivity to the
quasi-likelihood by the perturbations.

To gain the influence information about the quasi-likelihood estimator 3 based
on the local influence we need some derivatives of the quasi-likelihood function
with respect to the parameters. Equation (2.1) is the quasi-score function for 8
evaluated at 3 = 3, which is rewritten by

0Q _ 1y

— =X'E

aﬂ /¢a
where E = diag(é(1), - .- €(7n)) and &(7;) = k(i) (Yi— &) /V (i) for i = 1,..., n.
Here #; = x; B and k(7};) = Ops/On;ilng—s, = Ok(n:)/0N;i|n;=5,. Furthermore, we
obtained the Hessian matrix

-Qpg(0) = X"EX, (3.49)

where E = diag(é(f), ..., é()) and &) = [K2(%) — k(@) (Yi — f)]/V (f)-
Here k(%;) is the second derivative of the k(7;) with respect to 7; evaluated at
n; = 7. If k(u) = u or we use the expectation of the Hessian matrix instead of
the Hessian matrix, then (3.4) reduces to —Qﬁﬁ(ﬁ) = XTV~1X, where V is the
n x n diagonal matrix with the 7** element V'(j;) (Thomas and Cook, 1986).

To construct I = AT(XTEX) 1A we need the matrix A which is determined
by the perturbation scheme. The influence diagnostic measure is calculated as
follows. First we specify a perturbation scheme and derive A. Then we use the
direction of the maximum normal curvature or the diagonal elements of F.

For example, we consider the normal linear model for the normally distributed
response variable. Natural choices are given as g(u;) = w;, V() = 1,¢ = o2
Then we have k(#;) = fi;, k(7)) = 1, (ﬁz) =0 and E = —I, that is the same as the
results of Cook (1986) for the normal linear model.

4. Perturbation Schemes

4.1, Case Weight Perturbation

We consider a case weight perturbation which modifies the weight given to
each case in the quasi-likelihood. Cook (1986) asserted that case weight pertur-
bation generalizes the case deletion by allowing fractional addition and deletion.
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Let the perturbed quasi-likelihood be
QBIw) =Y wiQ(w:, Ys). (4.1)
i=1

Simple calculation follows
A= XTE/ (]Aﬁ,

where E is the n x n diagonal matrix with the i** element &;(%:;) = k(f;)(yi —
f:)/V (). Then the direction of the maximum normal curvature can be ob-
tained by the eigenvector of F = EX(XTEX) !XTE associated with the largest
eigenvalue.

The Cook’s distance for GLMs is given by McCullagh and Nelder (1989, p.
407). Similarly we obtain the following results based on the reduced data omitting
the ** observation

(1 — ha)k(:)’

where B(i) denotes the estimate based on the reduced data, s; and h; are the
i** diagonal element of S = KV'K and H = SX(XTSX) X7, respectively.
Here K is the n x n diagonal matrix with the 5** element &(#%;). Thus the Cook’s
distance for the quasi-likelihood estimator of GLMs can be written as

ﬁ(i) — B = —(XTSX)_lxi

hi  (yi—fa)? 1
C; = ! LA 4.2
TR Vi 28 (42
The i** diagonal element of F' becomes k(#;)2 (v; —fi:)*xT (XTEX) ~'x;/ (V2(j1:) ),
which can be an alternative influence measure of the Cook’s distance. Further-
more the i** element of F is approximately equal to d; in (3.3) and it can be seen

in Section 5.

4.2. Perturbation of Covariates

Cook (1986) proposed a general scheme for perturbing the whole design matrix
X in linear regression models. Some authors have studied the perturbation of
covariates (Thomas and Cook, 1989). This perturbation can be considered from
the well known fact that minor perturbations of the covariates in linear regression
can seriously influence the least squares estimates when collinearity is present
(Suérez Rancel and Gonzilez Sierra, 2001).
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Let x¢ be the t*» column vector of X. Consider the perturbation
X6 = X+ urw, (4.3)

where the perturbation vector w is the n x 1 vector and wu; is a scalar. This
perturbation means that the ¢ column of the covariates is modified by adding
some minor perturbation vector which is scaled by u; (Thomas and Cook, 1989).
Note that the perturbation of covariates is not meaningful for indicator variables.

The perturbation (4.2) affects the quasi-likelihood Q(B3|w) only through 7.
When the t** column of X is perturbed, pij is perturbed to pjw = k(1ij,w). The
partial derivative of the quasi-likelihood Q evaluated at 8 and wg = 0,, follows

that
8%Q
Ow;0pB;

Thus we obtained

(y’i - /}'1’) }

|,B,W0 = %{Btl'ijé(ﬁi) + 8;ek () Vi)

Ut
At = —,\A.t,
¢

where A; = (BtXTE + l(t)éT). Here 1 is the p—dimensional column vector
with its the ¢ element equal to 1 and the others being zero and é% = (é1,...,¢é,).

Then the local influence measures can be obtained from the eigenvectors of
AXTEX) AT,

4.3. Perturbation of Response

We consider the perturbation which altering the vector of response y by
adding a vector w. Note that such a perturbation may be meaningless if the
response is discrete (Emerson et al., 1984). Since y; have a different variance,
it needs a scaling of the perturbation vector w; by an estimate of the standard
deviation of y;. Thus we obtain the i** perturbed response vector

Yiw = Yi + 1/ V(/li)g%wi fori=1,...,n.

Simple calculation yields
Ay — $—1/2xTKv—1/2.

The eigenvector of V-1/2KX(XTEX)'XTKV~1/2 associated with the largest
eigenvalue gives the information about the influence diagnostics for B
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5. Examples

In this section we illustrate how the local influence measures given in Sections
3 and 4 provide influence information about the quasi-likelihood estimates of the
regression coefficients in GLMs. We investigate the influence of observations on
the regression coefficients using the direction vectors l,,,; and d; in (3.2) and
(3.3) under some perturbations.

Allison and Cicchetti (1976) presented the data on the sleep behavior of 45
mammals after excluding non-available observations. The response variable de-
scribes the proportion of sleep spent dreaming and the predictors are the weight
of the body and the brain, the lifespan, the gestation period and the three con-
structed indices measuring vulnerability to predation, exposure while sleeping
and overall danger. Considering the response that is not binomial suggests the
binomial GLM with the canonical logit link (Faraway, 2006, pp. 149-150). After
backward elimination we determined the quasi-binomial model on the data

g = —0.493 + 0.146 log(body) — 0.287 log(lifespan) — 0.173 danger.

Case deletion gives that observations 2 and 11 are influential, especially ob-
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Figure 5.1: The local and global influence measures of case weights for the mam-
mals sleep data.
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servation 2 is most influential. The Cook’s distance C; for each observation is
depicted in Figure 5.1. We computed the local influence matrices F under the
case weight perturbation (4.1). The index plots of ., and F’d,- are given in
Figure 5.1. The largest eigenvalue of F is 20.5. For comparison we used the
standardized values for three influence measures. Both C; and Fj, have similar
results which is described in Section 4.1. Figure 5.1 shows that observations 2
and 21 have a large local impact on the regression coeflicients under the case
weight perturbation (4.1) and observations 2 and 11 have a large global impact
from deletion approach. Hence observation 2 has largest the influence from the
local and global point of view.

Next we consider the perturbation to the individual covariates except the
variable danger, because a categorical data is meaningless. From the figures of
the plots 1.2 and Fd,- for most of covariates, we found that observation 2 is most
influential and observations 12 and 38 are minor for all covariates. In this article
we present the result of local influence measures for covariate log(lifespan). Figure
5.2 depicts the direction vector 1,45 to the maximum curvature and the diagonal
elements F, of F under the small perturbation (4.3) for covariate log (lifespan).
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Figure 5.2: The index plots of the maximum direction vectors and diagonal el-
ements of F under the perturbation of covariate log(lifespan) for the mammals
sleep data.
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It seems that the observations which have the same sign in the direction vector
corresponding to the maximum curvature have joint reinforcing influence. Ob-
servations 2 and 12 have joint reinforcing influence, while observations 2 and 38
have joint canceling influence. The sign of the maximum direction vector means
the direction of perturbation corresponding to a single explanatory variable. If
we perturb the variable li fespan, observations 2 and 12 attract the regression
coefficients in the same direction. However, observations 2 and 38 impact the
model in the opposite direction. Thus the maximum direction vector gives joint
influence information about multiple observations.

From the local influence measure for the mammal sleep data we may conclude
that observation 2 has the largest impact on the estimation process for the quasi-
binomial model.

6. Conclusions

We propose a local influence measure for the regression estimator of quasi-
likelihood GLMs. We extend the work of Cook (1986) to the derivation of local
influence measures under perturbation of case weight, covariate and response for
the regression estimator in quasi-likelihood GLMs which is not based on likelihood
functions but quasi-likelihood functions. We consider the local influence measures
under several perturbation schemes. The study of a real data set shows the
effectiveness of a new approach by comparison with deletion approaches, because
these need a large amount of computing time and do not provide the influence
information on the explanatory variables.
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