DOI QR코드

DOI QR Code

Histone methylation and transcription

히스톤 메틸화와 유전자 전사

  • Kim, Ae-Ri (School of Life Sciences, College of Natural Sciences, Pusan National University)
  • 김애리 (부산대학교 자연과학대학 생명과학부)
  • Published : 2007.04.25

Abstract

Amino acids of histone tail are covalently modified in eukaryotic cells. Lysine residues in histone H3 and H4 are methylated at three levels; mono-, di- or trimethylation. Methylation in histones is related with transcription of the genes in distinct pattern depending on lysine residues and methylated levels. Relation between transcription and methylation has been relatively well understood at three lysines H3K4, H3K9 and H3K36. H3K4 is methylated in active or potentially active chromatin and its methylation associates with active transcription. H3K9 is generally methylated in heterochromatin or repressed gene, but trimethylation of this lysine occur in actively transcribed genes also. Methylation at H3K36 generally correlates with active chromatin/transcription, but the correlation of its dimethylation with transcription is controversial. All together methylation patterns of individual lysine residues in histone relate with activation or repression of transcription and may provide distinctive roles in transcriptional regulation of the eukaryotic genes.

Keywords

References

  1. Bannister, A. J., R. Schneider, F. A. Myers, A. W. Thorne, C. Crane-Robinson and T. Kouzarides. 2005. Spatial distribution of di- and tri-methyl lysine 36 of histone H3 at active genes. J. Biol. Chem. 280, 17732-17736 https://doi.org/10.1074/jbc.M500796200
  2. Bannister, A. J., P. Zegerman, J. F. Partridge, E. A. Miska, J. O. Thomas, R. C. Allshire and T. Kouzarides. 2001. Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain. Nature 410, 120-124 https://doi.org/10.1038/35065138
  3. Berger, S. L. 2002. Histone modifications in transcriptional regulation. Curr. Opin. Genet. Dev. 12, 142-148 https://doi.org/10.1016/S0959-437X(02)00279-4
  4. Bernstein, B. E., E. L. Humphrey, R. L. Erlich, R. Schneider, P. Bouman, J. S. Liu, T. Kouzarides and S. L. Schreiber. 2002. Methylation of histone H3 Lys 4 in cod¬ing regions of active genes. Proc. Natl. Acad. Sci. U. S. A. 99, 8695-8700 https://doi.org/10.1073/pnas.082249499
  5. Briggs, S. D., M. Bryk, B. D. Strahl, W. L. Cheung, J. K. Davie, S. Y. Dent, F. Winston and C. D. Allis. 2001. Histone H3 lysine 4 methylation is mediated by Set1 and required for cell growth and rDNA silencing in Saccharomyces cerevisiae. Genes Dev. 15, 3286-3295 https://doi.org/10.1101/gad.940201
  6. Jenuwein, T. and C. D. Allis. 2001. Translating the histone code. Science 293, 1074-1080 https://doi.org/10.1126/science.1063127
  7. Kim, A. and A. Dean. 2004. Developmental stage differences in chromatin sub-domains of the b-globin locus. Proc. Natl. Acad. Sci. U.S. A. 101, 7028-7033 https://doi.org/10.1073/pnas.0307985101
  8. Kim, A. and A. Dean. 2003. A human globin enhancer causes both discrete and widespread alterations in chromatin structure. Mol. Cell. Biol. 23, 8099-8109 https://doi.org/10.1128/MCB.23.22.8099-8109.2003
  9. Kim, A., C. M. Kiefer and A. Dean. 2007. Distinctive Signatures of Histone Methylation in Transcribed Coding and Noncoding Human {beta}-Globin Sequences. Mol. Cell. Biol. 27, 1271-1279 https://doi.org/10.1128/MCB.01684-06
  10. Kornberg, R. D. and Y. Lorch. 1999. Twenty-five years of the nucleosome, fundamental particle of the eukaryote chromosome. Cell 98, 285-294 https://doi.org/10.1016/S0092-8674(00)81958-3
  11. Krogan, N. J., M. Kim, A. Tong, A. Golshani, G. Cagney, V. Canadien, D. P. Richards, B. K. Beattie, A. Emili, C. Boone, A. Shilatifard, S. Buratowski and J. Greenblatt. 2003. Methylation of histone H3 by Set2 in Saccharomyces cerevisiae is linked to transcriptional elongation by RNA polymerase II. Mol. Cell. Biol. 23, 4207-4218 https://doi.org/10.1128/MCB.23.12.4207-4218.2003
  12. Lachner, M., D. O'Carroll, S. Rea, K. Mechtler and T. Jenuwein. 2001. Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins. Nature 410, 116-120 https://doi.org/10.1038/35065132
  13. Landry, J., A. Sutton, T. Hesman, J. Min, R. M. Xu, M. Johnston and R. Sternglanz. 2003. Set2-catalyzed methylation of histone H3 represses basal expression of GAL4 in Saccharomyces cerevisiae. Mol. Cell. Biol. 23, 5972-5978 https://doi.org/10.1128/MCB.23.17.5972-5978.2003
  14. Lee, D. Y., J. P. Northrop, M. H. Kuo and M. R. Stallcup. 2006. Histone H3 lysine 9 methyltransferase G9a is a transcriptional coactivator for nuclear receptors. J. Biol. Chem. 281, 8476-8485 https://doi.org/10.1074/jbc.M511093200
  15. Li, B., L. Howe, S. Anderson, J. R. r. Yates and J. L. Workman. 2003. The Set2 histone methyltransferase functions through the phosphorylated carboxyl-terminal domain of RNA polymerase II. J. Biol. Chem. 278, 8897-8903 https://doi.org/10.1074/jbc.M212134200
  16. Litt, M. D., M. Simpson, M. Gaszner, C. D. Allis and G. Felsenfeld. 2001. Correlation between histone lysine methylation and developmental changes at the chicken beta-globin locus. Science 293, 2453-2455 https://doi.org/10.1126/science.1064413
  17. Luger, K., A. W. Mader, R. K. Richmond, D. F. Sargent and T. J. Richmond. 1997. Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature 389, 251-260 https://doi.org/10.1038/38444
  18. Martin, C. and Y. Zhang. 2005. The diverse functions of histone lysine methylation. Nat. Rev. Mol. Cell. Biol. 6, 838-849 https://doi.org/10.1038/nrm1761
  19. Milne, T. A., Y. Dou, M. E. Martin, H. W. Brock, R. G. Roeder and J. L. Hess. 2005. MLL associates specifically with a subset of transcriptionally active target genes. Proc. Natl. Acad. Sci. USA. 102, 14765-14770 https://doi.org/10.1073/pnas.0503630102
  20. Moril1on, A., N. Karabetsou, A. Nair and J. Mellor. 2005. Dynamic lysine methylation on histone H3 defines the regulatory phase of gene transcription, Mol. Cell 18, 723-734 https://doi.org/10.1016/j.molcel.2005.05.009
  21. Ng, H. H., F. Robert, R. A. Young and K. Struhl. 2003. Targeted recruitment of Set1 histone methylase by elongating Pol II provides a localized mark and memory of recent transcriptional activity. Mol. Cell 11, 709-719 https://doi.org/10.1016/S1097-2765(03)00092-3
  22. Rea, S., F. Eisenhaber, D. O'Carroll, B. D. Strahl, Z. W. Sun, M. Schmid, S. Opravil, K. Mechtler, C. P. Ponting, C. D. Allis and T. Jenuwein. 2000. Regulation of chromatin structure by site-specific histone H3 methyltransferases, Nature 406, 593-539 https://doi.org/10.1038/35020506
  23. Ruthenburg, A. J., C. D. Allis and J. Wysocka. 2007. Methylation of lysine 4 on histone H3: intricacy of writing and reading a single epigenetic mark. Mol. Cell 25, 15-30 https://doi.org/10.1016/j.molcel.2006.12.014
  24. Santos-Rosa, H., R. Schneider, A. J. Bannister, J. Sherriff, B. E. Bernstein, N. C. Emre, S. L. Schreiber, J. Mellor and T. Kouzarides. 2002. Active genes are tri-methylated at K4 of histone H3. Nature 419, 407-411 https://doi.org/10.1038/nature01080
  25. Schneider, R., A. J. Bannister, F. A. Myers, A. W. Thorne, C. Crane-Robinson and T. Kouzarides. 2004. Histone H3 lysine 4 methylation patterns in higher eukaryotic genes. Nat. Cell. Biol. 6, 73-77 https://doi.org/10.1038/ncb1076
  26. Sims, R. J., 3rd., K. Nishioka and D. Reinberg. 2003. Histone lysine methylation: a signature for chromatin function. Trends Genet. 19, 629-639 https://doi.org/10.1016/j.tig.2003.09.007
  27. Sims, R. J. r. and D. Reinberg. 2006. Histone H3 Lys 4 methylation: caught in a bind? Genes Dev. 20, 2779-2786 https://doi.org/10.1101/gad.1468206
  28. Strahl, B. D., P. A. Grant, S. D. Briggs, Z. W. Sun, J. R. Bone, J. A. Caldwell, S. Mollah, R. G. Cook, J. Shabanowitz, D. F. Hunt and C. D. Allis. 2002. Set2 is a nucleosomal histone H3-selective methyltransferase that mediates transcriptional repression. Mol. Cell. Biol. 22, 1298-1306 https://doi.org/10.1128/MCB.22.5.1298-1306.2002
  29. Strahl, B. D., R. Ohba, R. G. Cook and C. D. Allis. 1999. Methylation of histone H3 at lysine 4 is highly conserved and correlates with transcriptionally active nuclei in Tetrahymena. Proc. Natl. Acad. Sci. U. S. A. 96, 14967-14972 https://doi.org/10.1073/pnas.96.26.14967
  30. Sun, X. J., J. Wei, X. Y. Wu, M. Hu, L. Wang, H. H. Wang, Q. H. Zhang, S. J. Chen, Q. H. Huang and Z. Chen. 2005. Identification and characterization of a novel human histone H3 lysine 36-specific methyltransferase. J. Biol. Chem. 280, 35261-35271 https://doi.org/10.1074/jbc.M504012200
  31. Tachibana, M., K. Sugimoto, M. Nozaki, J. Ueda, T. Ohta, M. Ohki, M. Fukuda, N. Takeda, H. Niida, H. Kato and Y. Shinkai. 2002. G9a histone methyltransferase plays a dominant role in euchromatic histone H3 lysine 9 methylation and is essential for early embryogenesis. Genes Dev. 16, 1779-1791 https://doi.org/10.1101/gad.989402
  32. Vakoc, C. R., S. A. Mandat, B. A. Olenchock and G. A. Blobel. 2005. Histone H3 lysine 9 methylation and HP1gamma are associated with transcription elongation through mammalian chromatin. Mol. Cell 19, 381-391 https://doi.org/10.1016/j.molcel.2005.06.011
  33. Vakoc, C. R., M. M. Sachdeva, H. Wang and G. A. Blobel. 2006. Profile of histone lysine methylation across transcribed mammalian chromatin. Mol. Cell. Biol. 26, 9185-9195 https://doi.org/10.1128/MCB.01529-06
  34. van Attikum, H. and S. M. Gasser. 2005. The histone code at DNA breaks: a guide to repair? Nat. Rev. Mol. Cell. Biol. 6, 757-765 https://doi.org/10.1038/nrm1737
  35. Xiao, T., H. Hall, K. O. Kizer, Y. Shibata, M. C. Hall, C. H. Borchers and B. D. Strahl. 2003. Phosphorylation of RNA polymerase II CTD regulates H3 methylation in yeast. Genes Dev. 17, 654-663 https://doi.org/10.1101/gad.1055503