학생들이 제시한 질문의 유형 분석을 통한 개방적 참탐구 활동의 인지적 추론 측면의 효과

The Effects of Authentic Open Inquiry on Cognitive Reasoning through an Analysis of Types of Student-generated Questions

  • 발행 : 2007.12.30

초록

이 연구에서는 과학자들의 연구 수행에서 나타나는 인식론적 특성을 반영한 개방적 참탐구 활동을 수행하도록 하고,이 과정에서 학생들이 실제로 과학의 인지과정을 경험하면서 참탐구 인식론을 반영한 추론 특성을 보이는지를 알아보고자 하였다. 서울시 소재 과학고등학교 1학년 학생 86명을 연구 대상으로 하였으며,4주 동안 비교집단 2개 학급의 학생들은 전통적인 학교 탐구 활동을 수행하게 하고 실험집단 2개 학급의 학생들은 개방적 참탐구 활동을 수행하게 한 후 학생들이 제기한 질문을 비교하였다. 그 결과 두 집단의 학생들이 제기한 질문의 빈도는 크게 차이가 없었으나,질문의 유형에는 차이가 있었다. 실험집단에서 사고 질문의 빈도가 높게 나타났고,질문의 세부 유형에서도 비교집단 학생들의 질문과 유의미한 차이를 보였다(p <.01) 특히 사고를 확장시키는 질문과 변칙 데이터에 대한 질문의 빈도에서 큰 차이가 있었다. 또한 실험 집단에서 제기된 질문 가운데에는 과학적 방법,변칙 데이터,추론의 불확실성과 같은 참과학의 인식론을 반영하는 질문들이 발견되어 개방적 참탐구 수행에서 학생들이 과학적 인식론을 이해하게 될 가능성을 확인할 수 있었다. 그리고 탐구주제에 따른 질문 비교에서 개방도가 높아질수록 변칙탐지 질문과 전략질문의 빈도가 높아지는 경향이 있었고,귀납적 질문과 유추적 질문의 경우에는 개방도보다는 탐구 주제와 관련이 있는 것으로 나타났다.

The purpose of this study was to investigate if students may actually experience scientific reasoning based on an epistemology of authentic science during authentic open inquiry. The samples were 86 10th graders in a science-high school in Seoul. The experimental group practiced authentic open inquiry and the control group practiced traditional school science inquiry in five weeks. Then, the questions students asked while performing inquiry tasks were analyzed. The frequency of the questions asked by students was almost same between two groups, however, the types of questions were different. The frequency of thinking questions in experimental group was higher than the control, and the difference was statistically significant (P<.01). Particularly, the frequency of expansive thinking questions and anomaly detection questions was much higher in experimental than the control group. Judging from the result, with the students from the experimental group asking questions reflecting on the epistemology of authentic science such as scientific methods, anomalous data, and uncertainty about reasoning, students may understand authentic science features during the activities of open authentic inquiry. The result from comparing questions according to the inquiry subject showed that more openness caused the higher frequency of anomaly detection questions and strategy questions, but that inductive thinking questions and analogical thinking questions were connected to inquiry subject rather than the openness of the inquiry.

키워드

참고문헌

  1. 권용주, 최상주, 박윤복, 정진수 (2003). 대학생들의 귀납적 탐구에서 나타난 과학적 사고의 유형과 과정. 한국과학교육학회지, 23(3),286-298
  2. 김은숙, 윤혜경 (1996) 제1, 2회 학생 과학 공동 탐구 토론대회의 종합적 평가. 한국과학교육학회지, 16(4), 376- 338
  3. 김희경 (2003) 중학생의 동료 간 논변활동을 강조한 개방적 물리탐구: 조건, 특정, 역할을 중심으로-. 서울 대학교박사학위 논문
  4. 김희경, 송진웅 (2003). 과학실험의 목적에 대한 중학생의 인식 조사. 한국과학교육학회지, 23(3), 254-264
  5. 이명숙 (2003) 중학교 과학수업에서 학생의 질문에 영향을 미치는 요인과 질문의 유형. 서울대학교대학원 석사학위 논문
  6. 이명숙, 조광희, 송기웅 (2004) 소집단 실험활동에서 중학생 질문-응답의 유형과 빈도. 한국과학교육학회지, 24(2), 277-286
  7. Abd-EI-Khalick, F., Bell, R. L. & Lederman, N. G. (1998). The nature of s; ience and instructional practice: Making the unnatural no ural. Science Education. 82(4), 417-436 https://doi.org/10.1002/(SICI)1098-237X(199807)82:4<417::AID-SCE1>3.0.CO;2-E
  8. American Association for the Advancement of Scierxe (1993). Benchmarks for science literacy: Project 2061. New York: Oxford University Press
  9. Bell, R., Blair, L. M. Crawford, N. A. & Lederman, N. G. (2003). Just do it Impact of a Science Apprenticeship Program or High .chool Students' Understandings of the Nature of Science and Scientific Inquiry. Journal of Research in Science Teaching, 40(5), 487-507 https://doi.org/10.1002/tea.10086
  10. Berg, C. A., Bergeneaihl, V. C. & Lundberg, B. K. (2003). Bencfiting from an open-ended experiment? A comparison of attir.ides to, and outcomes of. an expository versus an open-inquiry version of the same experiment. International Journal of Science Education, 25(3), 351-372 https://doi.org/10.1080/09500690210145738
  11. Chiappetta, E. L. &Coballa, T. R. (2006). Science Instruction in the Middl and Seconclary Schools, NJ: Pearson Merrill Prentice Hill. pp. 200-222
  12. Clin, C, Borwn1, D. E. & Bruce, B. C. (2002). Student-generaring question: a meaningful aspect of learning in science, International Journal of Science Education. 24(5). 521-549 https://doi.org/10.1080/09500690110095249
  13. Chin. C. & Chia, L.(2004). Problem-Based Learning: Using Students' Questions to Drive Knowledge Construction. Science Education, 88(5), 707-727 https://doi.org/10.1002/sce.10144
  14. Chin. C. & Chia, L.(2006). Problem-Based Learning. Using Ill-Structured Probl .ms in Biology Project Work. Science Education, 90(1I). 24-67
  15. Chinn, C. A. & Brawer, W. F. (1998) Model of Data: A Theory of How'eople Evaluate Data. Cognition and Instruction, 19(3), 323- 393 https://doi.org/10.1207/S1532690XCI1903_3
  16. Chinn, C. A. & Mallxra, B. A. (2002). Epistemologically Authentic Inquiry inI Schools: A Tbeoretica! Framework for Evaluating Inquiry Tasks. Science Education, 86 (2), 175-218 https://doi.org/10.1002/sce.10001
  17. Cuccio-Schirripa, S.& Steiner, H. E. (2000). Enhancement and Analysis of Science Question Level for Middle School Students. Journal of Research in Science Teaching, 37(2). 210-224 https://doi.org/10.1002/(SICI)1098-2736(200002)37:2<210::AID-TEA7>3.0.CO;2-I
  18. Dillon, J. T. (1982).The Effect of the questions in education and other enu rprise. Journal of Curriculum Studies. 14(2). 127-152 https://doi.org/10.1080/0022027820140203
  19. Dori, Y. J. & Herscovitz, O. (1999). Question-posing capability as an alternative evaluation method; Analysis of an environmental case study. Joumal of Research in Science Teaching, 36(4), 411-430 https://doi.org/10.1002/(SICI)1098-2736(199904)36:4<411::AID-TEA2>3.0.CO;2-E
  20. Driver, R, Learch, J., Miller, R & Scott, P. (1996). Young People's Image of science. Open University Press
  21. Hamers, J. H., de Koning, E. & Sijtsma, K. (1998) Indue tive reasoning in third grade: Intervention promises and constraints, Contemporary Educational Psychology, 23 (2), 132-148 https://doi.org/10.1006/ceps.1998.0966
  22. Hodson, D. (2001). 과학자들이 정말 이렇게 할까?-학교 실험실 안팍의 참된 과학을 찾아서, 과학실험실습교육(황성원 역, pp. 111-129). 서울: 시그마프레스(원저1998 출판)
  23. Lee, H. & Songer, N. B. (2003). Making authentic scien.e accessible to students. International Jounal of Science Education, 25(8), 923-948 https://doi.org/10.1080/09500690305023
  24. Lederman, N. G. (1992). Students' and teachers' conceptions of the nature of science: A review of the research, Journal of Research in Science Teaching, 29(4), 331-359 https://doi.org/10.1002/tea.3660290404
  25. Marbach-Ad, G. & Sokolove, P. G. (2000). Can undergraduate biology student learn to ask higher level question? Journal of Research in Science Teaching, 37(8), 854-870 https://doi.org/10.1002/1098-2736(200010)37:8<854::AID-TEA6>3.0.CO;2-5
  26. Maskill, R. & de Jesus. H. P. (1997), Pupil's questions, alternative frameworks and the design of science teaching. International Journal of Science Education, 19(7), 781-799 https://doi.org/10.1080/0950069970190704
  27. National Research Council (1996). National Science Education Standards. Washington, DC: National Academy Press
  28. National Research Council (2000). Inquiry and the National Science Education Standards: A Guide for Teaching and Learning. Washington, DC: National Academy Press
  29. Roychoudhury, A. & Roth, W. (1996). Interactions in an open-inquiry physics laboratory. International Joumal of Science Education, 18(4), 423-445 https://doi.org/10.1080/0950069960180403
  30. Sandoval, W. A. & Reiser, B. (2004). ExplanationDriven Inquiry: Integrating Conceptual and Epistemic Scaffolds for Scientific Inquiry. Science Education, 88(3), 345-372 https://doi.org/10.1002/sce.10130
  31. Sandoval, W. A. & Reiser, B. (2004). ExplanationDriven Inquiry: Integrating Conceptual and Epistemic Scaffolds for Scientific Inquiry. Science Education, 88(3), 345-372 https://doi.org/10.1002/sce.10130
  32. Scardamalia, M.,. & Bereiter, C. (1992). Text-based and knowledge-based questioning by children, Cognition and Instruction, 9(3), 177-199 https://doi.org/10.1207/s1532690xci0903_1
  33. White, R. T. (1996). TIle link between the laboratory and learning, International Journal of Science Education, 18(7), 761-774 https://doi.org/10.1080/0950069960180703
  34. Windschitl, M. (2003). Inquiry projects in Science Teacher Education: What Can Investigative Experiences Reveal About Teacher Thinking and Eventual Oassroom Practice? Science Education, 87(1), 112-143 https://doi.org/10.1002/sce.10044
  35. Zion, M, Slezak, M, Shapira, D., Link, E., Bashan, N., Brumer, M, Orian, T., Nussinowitz, R., Court, D., Agrest, B., lvleudeiovici, R & Valanides, N. (2004). Dyramie, Open Inquiry in Biology Learning, Science Education, 88(5), 728-753 https://doi.org/10.1002/sce.10145