DOI QR코드

DOI QR Code

EFFECTS OF THE HERBICIDE, BUTACHLOR, ON NITROGEN FIXATION IN PHOTOTROPHIC NONSULFUR BACTERIA

  • Lee, Kyung-Mi (Department of Biological Sciences, Sungkyunkwan University) ;
  • Kim, Jai-Soo (Department of Life Science, Kyonggi University) ;
  • Lee, Hyun-Soon (Department of Biological Sciences, Sungkyunkwan University)
  • 발행 : 2007.09.28

초록

In an effort to identify possible microbes for seeking bioagents for remediation of herbicide-contaminated soils, seven species of phototrophic nonsulfur bacteria (Rhodobacter capsulatus and sphaeroides, Rhodospirillum rubrum, Rhodopseudomonas acidophila, blastica and viridis, Rhodomicrobium vannielii) were grown in the presence of the herbicide, butachlor, and bacterial growth rates and nitrogen fixation were measured with different carbon sources. Under general conditions, all species showed 17-53% reductions in growth rate following butachlor treatment. Under nitrogen-fixing conditions, Rb. capsulatus and Rs. rubrum showed 1-4% increases in the growth rates and 2-10% increases in nitrogen-fixing abilities, while the other 5 species showed decreases of 17-47% and 17-85%, respectively. The finding that Rp. acidophila, Rp. blastica, Rp. viridis and Rm. vannielii showed stronger inhibitions of nitrogenase activity seems to indicate that species in genera Rhodobacter and Rhodospirillum are less influenced by butachlor than those in Rhodopseudomonas and Rhodomicrobium in terms of nitrogen-fixing ability. Overall, nitrogenase activity was closely correlated with both growth rate and glutamine synthetase activity (representing nitrogen metabolism). When the carbon sources were compared, pyruvate (three carbons) was best for all species in terms of growth rate and nitrogen fixation, with malate (four carbons) showing intermediate values and ribose(five carbons) showing the lowest; these trends did not change in response to butachlor treatment. We verified that each of the 7 species had a plasmid ($12.2{\sim}23.5\;Kb$). We found that all 7 species could use butachlor as a sole carbon source and 3 species were controlled by plasmid-born genes, but it is doubtful whether plasmid-born genes were responsible to nitrogen fixation.

키워드

참고문헌

  1. Kamen, M. D., and Gest, H., Evidence for a nitrogenase system in the photosynthetic bacteria Rhodospirillum rubrum, Science, 109, 560-562 (1949) https://doi.org/10.1126/science.109.2840.560
  2. Madigan, M. T., Microbiology of nitrogen fixation by anoxygenic photosynthetic bacteria, In Blankenship, R. E., Madigan, M. T., and Bauer C. E., (eds.), Anoxygenic photosynthetic bacteria. Kluwer, Boston, MA., pp. 915-928 ( 1995)
  3. Oelze, J., and Kein, G., Control of nitrogen fixation by oxygen in purple nonsulfur bacteria, Arch. Microbiol., 165, 219-225 (1996) https://doi.org/10.1007/s002030050319
  4. Ormerod, J. G., Ormerod, K. S., and Gest, H., Light-dependent utilization of organic compounds and photoproduction of molecular hydrogen by photosynthetic bacteria: relationship with nitrogen metabolism, Arch. Biochem. Biophys., 94, 449-463 (1961) https://doi.org/10.1016/0003-9861(61)90073-X
  5. Siefert, E., Irgens, R. L., and Pfennig, N., Phototrophic purple and green bacteria in sewage treatment plant, Appl. Environ. Microbiol., 35, 38-44 (1978)
  6. Sylvie, E., Dischert, W., Colbeau, A., and Bauer, C. E., Expression of uptake hydrogenase and molybdenum nitrogenase in Rhodobacter capsulatus is coregulated by the RegB- RegA two-component regulatory system, J. Bacteriol., 182, 2831-2837 (2000) https://doi.org/10.1128/JB.182.10.2831-2837.2000
  7. Min, H., Ye, Y. F., Chen, Z. Y., Wu, W. X., and Yufeng, D., Effects of butachlor on microbial populations and enzyme activities in paddy soil, J. Environ. Sci. Health A, 36, 581-595 (2001) https://doi.org/10.1081/PFC-100106187
  8. Min, H., Ye, Y. F., Chen, Z. Y., Wu, W. X., and Du, Y. F., Effects of butachlor on microbial enzyme activities in soil, J. Eviron. Sci., 14, 413-417, China (2002)
  9. Pandey, A. K., Srivastava, Y., and Tiwari, D. N., Toxicity of the herbicide stamf-34 (propanil) on Nostoc calcicola, Zeit Allg. Microbiol., 24, 369-376, Germany (1984) https://doi.org/10.1002/jobm.3630240603
  10. Suseela, M. R., Effect of butachlor on growth and nitrogen Anabaena sphaerica, J. Environ. Biol., 22, 201-203 (2001)
  11. Lee, H. S., Herbicide effects on the growth of Rhodopseudomonas palustris, In Kitamura, H., Morida, S. H., and Yamashita J. P. (eds.), The Photosynthetic Bacteria, Gakukai Publishing Center, pp. 130-132, Japan (1984)
  12. Singh, R. P., Singh, R. K., and Tiwari, D. N., Effect of herbicide on the composition of cyanobacteria in transplanted rice, Plant Prot. Q, 1, 101-102 (1986)
  13. Beeson, K. E., Erdner, D. L., Bagwell, C. E., Lovell, C. R., and Sobecky, P. A., Differentiation of plasm ids in marine diazotroph assemblages determined by randomly amplified polymorphic DNA analysis, Microbiol., 148, ] 79-189 (2002) https://doi.org/10.1099/00221287-148-1-79
  14. Habte, M., and Alexander, M., Nitrogen fixation by photosynthetic bacteria in lowland rice culture, Appl. Environ. Microbiol., 39, 331-338 (1980)
  15. Chen, Y. L., Lo, C. C., and Wang, Y. S., Photodecomposition of the herbicide butachlor in aqueous solution, J. Pestic. Sci., 7, 41-45 (1982) https://doi.org/10.1584/jpestics.7.41
  16. Chung, K. Y., Enhanced degradation of pesticides, Environ. Eng. Res., 5, 47-61 (2000)
  17. Ye, C. M., Wang, X. J., and Zheng, H. H., Biodegradation of acetanilide herbicides acetochlor and butachlor in soil, J. Environ. Sci., 14, 524-529, China (2002)
  18. Madigan, M. T., Cox, S. S., and Stegman, R. A., Nitrogen fixation and nitrogenase activities in members of the family Rhodospirillaceae, J. Bacteriol., 157, 73-78 (1984)
  19. Serebrayakova, L., Teslya, T. E. A., Gogotov, I. N., and Kontrateva, E. N., Nitrogenase and hydrogenase activity of the members of the nonsulfur purple bacteria Rhodopseudomonas sphaeroides and Rhodopseudomnas capsulata, Microbiologia, 49, 401-407 (1980)
  20. Drepper, T., Raabe, K., Giaourakis, D., Gendrullis, M., Masepohl, B., and Klipp, W., The Hfq-like protein NrfA of the phototrophic purple bacterium Rhodobacter capsulatus controls nitrogen fixation via regulation of nifA and anfA expression, FEMS Microbiol. Lett., 215, 221-227 (2002) https://doi.org/10.1111/j.1574-6968.2002.tb11394.x
  21. Klipp, W., Masepohl, B., and Puhler, A., Identification and mapping of nitrogen fixation genes of Rhodobacter capsulatus: Duplication of nifA-nitB region, J. Bacteriol., 170, 693-699 (1988) https://doi.org/10.1128/jb.170.2.693-699.1988
  22. Willison, J. C., Ahombo, J., Chabert, J., Magnin, J., and Vignais, P. M., Genetic mapping of the Rhodosudomonas capsulata chromosome shows non-clustering of genes involved in nitrogen fixation, J. Gen. Microbiol., 131, 3002-3025 (1985)
  23. Hillmer, P., and Gest, H., $H_2$ metabolism in the photosynthetic bacterium Rhodopeudomonas capsulata: $H_2$ production by growing cultures, J. Bacteriol., 129, 724-731 (1977)
  24. Schlegel, H. G., The physiology of hydrogen bacteria, Antonie van Leeuwenhoek J. Microbiol. Serol., 42, 181-201, Netherlands (1976) https://doi.org/10.1007/BF00394115
  25. Lowry, O. H., Rosenbrough, N. J., Farr, A. L., and Randall, R. J., Protein measurement with the folin phenol reagent, J. Biol. Chem., 193, 265-275 (1951)
  26. Chaney, A. L., and March, E. P., Modified reagents for determination of urea and ammonia, Clin. Chem., 8, 130-132 (1962)
  27. Colbeau, A., Kelley, B. C., and Vignais, P. M., Hydrogenase activity in Rhodopseudomonas capsulatus relationship with nitrogenase activity, J. Bacteriol., 144, 141-148 (1980)
  28. Shapiro, B. M., and Stadtman, E. R., Glutamine synthetase (Escherichia coli), In Colowick, S. P., and Kaplan N. O., (eds.), Methods in Enzymology, 17A, 8th ed. Academic press, New York, pp. 901-992 (1970)
  29. Bender, R. A., Janssen, K. A., Resinck, A. D., Blumenberg, M., Foor, F., and Magasanik, B., Biochemical parameters of glutamine synthetase from Klebsiella aerogenes, J. Bacteriol., 129, 1001-1009 (1977)
  30. Birnboim, H. C., and Daly, J., A rapid alkaline extraction procedure for screening recornbinant plasmid DNA, Nucleic Acid Res., 7, 1513-1523 (1979) https://doi.org/10.1093/nar/7.6.1513
  31. Ish-Horowitz, D., and Burke, F. J., Rapid and efficient cosmid vector cloning, Nucleic Acid Res., 9, 2989-2998 (1981) https://doi.org/10.1093/nar/9.13.2989
  32. Maniatis, T., Fritsch, E. E., and Sambrook, J., Molecular cloning, a laboratory manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (1982)
  33. Rheinwald, J. G., Chakarbrty, A. M., and Gunsalus, I. C., A transm issible plasm id controlling camphor oxidation in Pseudomonas putida, Proc. Natl. Acad. Sci., 75, 885-889 (1973)
  34. Singh, H. N., Singh, H. R., and Vaishampayan, A., Toxic and mutagenic action of the herbicide alachlor (Lasso) on various strains of the nitrogen fixing blue green algae Nostoc muscorum and characterization of herbicide-induced mutants resistant to methylamine and L-methionin-DL-sulfoximine, Environ. Exp. Bot., 19, 5-12 (1979) https://doi.org/10.1016/0098-8472(79)90019-4
  35. Chen, P. C., Effect of herbicides on growth and photosynthesis of Anabaena $CH_2$ and $CH_3$, Proc. Natl. Sci. Coun. Repub. China, part B Life Sci., 10(3), 151-156 (1986)
  36. Singh, H. N., and Vaishampayan, A., Biological effects of rice-field herbicide Machete on various strains of the nitrogen-fixing blue green algae Nostoc muscorum, Environ. Exp. Bot., 18, 87-94 (1978) https://doi.org/10.1016/0098-8472(78)90002-3
  37. Yoch, D. C., Nitrogen fixation by photosynthetic bacteria, In Clayton, R. K., and Sistrom, W. R., (eds.), The Photosynthetic Bacteria, Plenum Publishing Co, New York, pp. 657-676 (1978)
  38. Schick, H. J., Substrate and light dependent fixation of molecular nitrogen in Rhodospirillum rubrum, Arch. Microbiol., 75, 89-101 (1971)
  39. Kim, J. K., Park, K. J., Cho, K. S., Nam, S. W., and Kim, Y. H., Characteristics of a water-purification system using immobilized photosynthetic bacteria beads, Environ. Eng. Res, 5, 227-238 (2005) https://doi.org/10.4491/eer.2005.10.5.227
  40. Baek, N., The study of transfer resistance of the inner material of microorganism immobilized beads, MS Thesis, Y onsei University, Seoul, Korea (1987)
  41. Seon, Y. H., Hydrogen production by phototrophic bacteria, MS thesis, Yonsei University, Seoul, Korea (1985)
  42. Lee, K. M., and Lee, H. S., Degradation of herbicide butachlor by purple nonsulfur photosynthetic bacteria, J. SKKU 40, 119-129, Korea (1989)
  43. Lee, K. M., and Lee, H. S., Effects of butachlor on the growth of purple non-sulfur bacteria, Kor. J. Microbiol., 29, 130-135 (1991)
  44. Top, E. M., Van Daele, P., De Saeyer, N., and Forney, L. J., Enhancement of 2,4-dichlorophenoxyacetic acid (2,4-D degradation in soil by dissemination of catabolic plasmids, Antonie van Leeuwenhoek, 73, 87-94 (1998) https://doi.org/10.1023/A:1000663619522
  45. Turnbull, G. A., Ousley, M., Walker, A., Shaw, E., and Morgan, J. A., Degradation of substituted phenyIurea herbicides by Arthrobacter globiforms strain D47 and characterization of a plasmid-associated hydrolase gene, puhA, Appl. Environ. Microbiol., 67, 2270-2275 (2001) https://doi.org/10.1128/AEM.67.5.2270-2275.2001
  46. Kobayashi, M., Fujii, K., Shimamoto, I., and Maki, T., Treatment and reuse of industrial wastewater by phototrophic bacteria, Prog. Water Tech., 11, 279-284 (1978)
  47. Lee, S S., J u, H. J., Lee, S. C., Chang, M., Lee, T. K., Shim, H. J., and Shin, E. B., The high treatment system development of waste water by photosynthetic bacteria, Korean J. Microbiol. Biotechnol., 30, 189-197 (2002)
  48. Weaver, P. F., Lien, S., and Seibert, M., Photobiological production of hydrogen, Solar Energy, 24, 3-45 (1980) https://doi.org/10.1016/0038-092X(80)90018-3

피인용 문헌

  1. Potential of Phototrophic Purple Nonsulfur Bacteria to Fix Nitrogen in Rice Fields vol.10, pp.1, 2007, https://doi.org/10.3390/microorganisms10010028