DOI QR코드

DOI QR Code

THE MEMBRANE BIOFILM REACTOR IS A VERSA TILE PLATFORM FOR WATER AND WASTEWATER TREATMENT

  • Rittmann, Bruce E. (Center for Environmental Biotechnology Biodesign Institute at Arizona State University)
  • 발행 : 2007.09.28

초록

The membrane biofilm reactor (MBfR) creates a natural partnership of a membrane and biofilm, because a gas-transfer membrane delivers a gaseous substrate to the biofilm that grows on the membrane's outer wall. $O_2$-based MBfRs (called membrane aerated biofilm reactors, or MABRs) have existed for much longer than $H_2$-based MBfRs, but the $O_2$-based MBfR is a versatile platform for reducing oxidized contaminants in many water-treatment settings: drinking water, ground water, wastewater, and agricultural drainage. Extensive bench-scale experimentation has proven that the $H_2$-based MBfR can reduce many oxidized contaminant to harmless or easily removed forms: e.g., ${NO_3}^-$ to $N_2$, ${ClO_4}^-$ to $H_2O$ and $Cl^-$, ${SeO_4}^{2-}$ to $Se^0$, and trichloroethene (TCE) to ethene and $Cl^-$. The MBfR has been tested at the pilot scale for ${NO_3}^-$ and ${ClO_4}^-$ and is now entering field-testing for many of the oxidized contaminants alone or in mixtures. For the MBfR to attain its full promise, several issues must be addressed by bench and field research: understanding interactions with mixtures of oxidized contaminants, treating waters with a high TDS concentration, developing modules that can be used in situ to augment pre-denitrification of wastewater, and keeping the capital costs low.

키워드

참고문헌

  1. Rittmann, B. E., 'The membrane biofilm reactor: the natural partnership of membranes and biofilm,' Water Sci. Technol., 53(3), 219-226 (2006)
  2. Lee, K.-C. and Rittmann, B. E., 'Applying a novel autohydrogenotrophic hollow-fiber membrane biofilm reactor for denitrification of drinking water,' Water Res., 36, 2040-2052 (2002) https://doi.org/10.1016/S0043-1354(01)00425-0
  3. Nerenberg, R., Rittmann, B. E., and Najrn, I., 'Perchlorate reduction in a hydrogen-based membrane-biofilm reactor,' J. Amer. Water Works Assn., 94( 11), 103-114 (2002)
  4. Rittmann, B. E., Nerenberg, R., Lee, K. C., Najrn, I., Gillogly, T. E., Lehman, G. E., and Adham, S. S., 'The hydrogen-based hollow-fiber membrane biofilm reactor (HFMBfR) for reducing oxidized contaminants,' Water Sci, Technol.: Water Supply, 4(1), 127-133 (2004)
  5. Yamagiwa, K., Ohkawa, A., and Hirasa, O., 'Simultaneous organic carbon removal and nitrification by biofilm formed on oxygen enrichment membrane,' J. Chem. Engr. Japan, 27, 638-643 (1994) https://doi.org/10.1252/jcej.27.638
  6. Semmens, M. J., Dahm, D., Shanahan, J., and A. Christianson, A., 'COD and nitrogen removal by biofilm growing on gas permeable membranes,' Water Res., 37, 4343-4350 (2003) https://doi.org/10.1016/S0043-1354(03)00416-0
  7. Cowman, J., Torres, C., and Rittmann, B. E., 'Total nitrogen removal in an aerobic/anoxic membrane biofilm reactor system,' Water Sci. Technol., 52(7), 115-120 (2005)
  8. Clapp, L. W., Regan, J. M., Ali, F., Newman, J. D., Park, J. K., and Noguera, D. R., 'Activity, structure, and stratification of membrane-attached methanotrophic biofilms cometabolically degrading trichloroethylene,' Water Sci. Technol., 39(7), 153-161 (1999)
  9. Aziz, C. E., Fitch, M. W., Linquist, L. K., Pressman, J. G., Georgiou, G., and Speitel, G. E., 'Methanotrophic biodegradation of trichloroethylene in a hollow fiber membrane bioreactor,' Environ. Sci. Technol. 29, 2574-2583 (1995) https://doi.org/10.1021/es00010a018
  10. Pressman, J. G., Georgiou, G., and Speitel, G. E., Jr., 'Scale-up considerations for a hollow-tiber-membrane bioreactor treating trichloroethylene-contaminated water,' Water Environ. Res., 77, 533-542 (2005) https://doi.org/10.2175/106143005X67458
  11. Ohandja, D. G., and Stuckey, D. C., 'Development of a membrane-aerated biofilm reactor to completely mineralise perchloroethylene in wastewaters,' J. Chem. Technol. Biotechnol., 81, 1736-1744 (2006) https://doi.org/10.1002/jctb.1596
  12. Schaffer, R. B., Ludzack, F. J., and Ettinger, M. B., 'Sewage treatment by oxygenation through permeable plastic films,' J. Water Pollution Control Fedn., 32, 939-941 (1960)
  13. Yeh, S. J., and Jenkins, C. R., 'Pure oxygen fixed film reactor,' J. Environ. Engr., 104, 611-623 (1978)
  14. Timberlake, D., Strand, S. E., and Williamson, K. J., 'Combined aerobic heterotrophic oxidation, nitrification, and denitrification in a permeable supported biofilm,' Water Res., 22, 1513-1517 (1988) https://doi.org/10.1016/0043-1354(88)90163-7
  15. Suzuki, Y., Miyahara, S., Takeishi, K., Oxygen-supply method using gas-permeable film for waste-water treatment,' Water Sci. Technol., 28(7), 243-250 (1993)
  16. Pankhania, M., Stephenson, T., and Semmems, M. J., 'Hollow fiber bioreactor for wastewater treatment using bubbleless membrane aeration,' Water Res., 28, 2233-2236 (1994) https://doi.org/10.1016/0043-1354(94)90037-X
  17. Brindle, K., and Stephenson, T., 'The application of membrane biological reactors for the treatment of wastewaters,' Biotechnol. Bioengr., 49, 601-610 (1996) https://doi.org/10.1002/(SICI)1097-0290(19960320)49:6<601::AID-BIT1>3.0.CO;2-S
  18. Brindle, K., and Stephenson, T., 'Nitrification in a bubbleless oxygen mass transfer membrane bioreactor,' Water Sci. Technol., 39(9), 261-267 (1996)
  19. Brindle, K., Stephenson, T., and Semmens, M. J., 'Nitrification and oxygen utilization in a membrane aeration bioreactor,' J. Membrane Sci., 144, 197-209 (1998) https://doi.org/10.1016/S0376-7388(98)00047-7
  20. Brindle, K., Stephenson, T., and Semmens, M. J., 'Pilot-plant treatment of a high-strength brewery wastewater using a membrane-aeration bioreactor,' Water Environ. Res., 71, 11971204 (1999)
  21. Pankhania, M., Brindle, K., and Stephenson, T., 'Membrane aeration bioreactors for wastewater treatment: completely mixed and plugflow operation,' Chem. Engr. J., 93, 131-136 (1999)
  22. Casey, E., Glennon, B., and Hamer, G., 'Review of membrane aerated biofilm reactors,' Resources Conservation Recycling, 27, 203-215 (1999) https://doi.org/10.1016/S0921-3449(99)00007-5
  23. Suzuki, Y., Hatano, N., Ito, S., and Ikeda, H., 'Performance of nitrogen removal and biofilm structure of porous gas permeable membrane reactor,' Water Sci. Technol., 41, (4-5), 211-217 (2000)
  24. Schramm, A., De Beer, D., Gieseke, A., and Amann, R., 'Microenvironments and distribution of nitrifying bacteria in a membranebound biofilm,' Environ. Microb., 2, 680-686 (2000) https://doi.org/10.1046/j.1462-2920.2000.00150.x
  25. Ho, C. M., Tseng, S. K., and Chang, Y. J., 'S im ultaneous nitrification and denitrification using an autotrophic membrane immobilized biofilm reactor,' Lett. Appl. Microb., 35, 481-485 (2002) https://doi.org/10.1046/j.1472-765X.2002.01225.x
  26. Cole, A. C., Shanahan, J. W., Semmens, M. J., and LaPara, T. M., 'Preliminary studies on the microbial community structure of membrane-aerated biofilms treating municipal wastewater,' Desalination, 146, 421-426 (2002) https://doi.org/10.1016/S0011-9164(02)00525-8
  27. Terada, A., Hibiya, K., Nagai, J., Tsuneda, S., and Hirata, A., 'Nitrogen removal characteristics and biofilm analysis of a membrane-aerated biofilm reactor applicable to high-strength nitrogenous wastewater treatment,' J. Biosci. Bioengr., 95, 170-178 (2003) https://doi.org/10.1016/S1389-1723(03)80124-X
  28. Shanahan, J. W., and Semmens, M. J., 'Multipopulation model of membrane-aerated biofilms,' Environ, Sci. Technol., 38, 3176-3183 (2004) https://doi.org/10.1021/es034809y
  29. Cole, A. C., Semmens, M. L., and LaPara, T. M., 'Stratification of activity and bacterial community structure in biofilms grown on mem branes transferring oxygen,' Appl. Environ. Microb., 70, 1982-1989 (2004) https://doi.org/10.1128/AEM.70.4.1982-1989.2004
  30. Shanahan, J. W., and Semmens, M. J., 'Influence of a nitrifying biofilm on local oxygen fluxes across a micro-porous flat sheet membrane,' J. Membrane Sci, 277(1-2), 65-74 (2006) https://doi.org/10.1016/j.memsci.2006.03.002
  31. Gonzalez-Brambila, M., Monroy, O., and Lopez-Isunza, F., 'Experimental and theoretical study of membrane-aerated biofilm reactor behavior under different modes of oxygen supply for the treatment of synthetic wastewater,' Chem. Engr. Sci., 61, 5268-5281 (2006) https://doi.org/10.1016/j.ces.2006.03.049
  32. Downing, L., and Nerenberg, R., 'Performance and microbial ecology of the hybrid membrane biofilm process (HMBP) for concurrent nitrification and denitrification of wastewater,' Water Sci. Technol., 55(8-9), 355-362 (2007) https://doi.org/10.2166/wst.2007.277
  33. Rittmann, B. E., 'The new frontier of oxidized contaminants,' Proc. 4th Int!. Con! Remediation of Chlorinated and Recalictrant Compounds, Battelle Press, Columbus, Ohio, CD-ROM (2004)
  34. Nerenberg, R., and Rittmann, B. E., 'Reduction of oxidized water contaminants with a hydrogen-based, hollow-fiber membrane biofilm reactor,' Water Sci. Technol., 49(1112), 223-230 (2004)
  35. Rittmann, B. E., and McCarty, P. L., Environmental Biotechnology: Principles and Applications, McGraw-Hill Book Co., New York (2001)
  36. National Research Council, Natural A ttenuation for Ground Water Remediation, National Academy Press, Washington, D.C. (2000)
  37. Lee, K. C., and Rittmann, B. E., 'A novel hollow-fiber membrane biofilm reactor for autohydrogenotrophic denitrification of drinking water,' Water Sci. Technol., 41(4-5), 219-226 (2000)
  38. Ergas, S. J., and Reuss, A. F., 'Hydrogenotrophoc denitrification of drinking water using a hollow fibre membrane bioreactor,' J. Water Supply, 50, 161-171 (2001) https://doi.org/10.2166/aqua.2001.0015
  39. Rittmann, B. E., and K.-C. Lee, K.-C., Hollow-Fiber Membrane Biofilm 'Reactor for Autohydrogenotrophic Treatment of Water, USA patent 6,387,262 (May 14, 2002)
  40. Rittmann, B. E., and Nerenberg, R., Perchlorate Reduction and Related Water Treatment Methods; U.S. patent no. 7,186,340 (March 6, 2007)
  41. Ho, C. M., Tseng, S. K., and Chang, Y. J., 'Autotrophic denitrification via a novel mem brane-attached biofi lm reactor,' Lett. Appl. Microb., 33, 201-205 (2001) https://doi.org/10.1046/j.1472-765x.2001.00984.x
  42. Kauser, J., A Novel Membrane Process for Autotrophic Denitrification, Water Environment Research Foundation, Arlington, Virginia, USA (2003)
  43. Terada, A., Kaku, S., Matsumoto, S, and Tsuneda, S., 'Rapid autohydrogenotrophic denitrification by a membrane biofilm reactor equipped with a fibrous support around a gas-permeable membrane,' Biochem. Engr, J., 31, 84-91 (2006) https://doi.org/10.1016/j.bej.2006.06.004
  44. Masters, G. M., Introduction to Environmental Engineering and Science, 2nd ed., Prentice Hall, Upper Saddle River, New Jersey (1998)
  45. Nerenberg, R., Kawagoshi, Y., and Rittmann, B. E., 'Kinetics of an autotrophic, hydrogenoxidizing perchlorate-reducing bacterium,' Water Res., 40, 3290-3296 (2007) https://doi.org/10.1016/j.watres.2006.06.035
  46. Nerenberg, R., Kawagoshi, Y., and Rittmann, B. E., 'Microbial ecology of a hydrogen-based membrane biofilm reactor reducing perchlorate in the presence of nitrate or oxygen,' Water Res., in press (2007)
  47. Nerenberg, R., and Rittmann, B. E., 'Perchlorate as a secondary substrate in a denitrifying hollow-fiber membrane biofilm reactor,' Water Sci. Technol.: Water Supply, 2(2), 259-265 (2002)
  48. Adham, S., Gillogly, T., Lehman, G., Rittmann, B. E., and Nerenberg, R., Membrane Biofilm Reactor Process for Nitrate and Perchlorate Removal, American Water Works Association Research Foundation, Denver, Colorado (2005)
  49. Chung, J., Rittmann, B. E., Wright, W. F., and Bowman, R. H., 'Simultaneous bioreduction of nitrate, perchlorate, selenate, chromate, arsenate, and dibromochloropropane using a hydrogen-based membrane biofilm reactor,' Biodegradation, 18, 199-209 (2007) https://doi.org/10.1007/s10532-006-9055-9
  50. Lee, K.-C., and Rittmann, B. E., 'Effects of pH and precipitation on autohydrogenotrophic denitrification using the hollow-fiber membrane-biofilm reactor,' Water Res., 37, 1551-1556 (2003) https://doi.org/10.1016/S0043-1354(02)00519-5
  51. Chung, J., Nerenberg, R., and Rittmann, B. E., 'Bio-reduction of selenate a hydrogenbased membrane biofilm reactor,' Environ. Sci. Technol., 40, 1664-1671 (2006) https://doi.org/10.1021/es051251g
  52. Chung, J., Nerenberg, R., Torres, C., and Rittmann, B. E., 'Bio-reduction of soluble chromate using a hydrogen-based membrane biofilm reactor,' Water Res., 40, 1634-1642 (2006) https://doi.org/10.1016/j.watres.2006.01.049
  53. Chung, J., Li, X., and Rittmann, B. E., 'Bio-reduction of arsenate using a hydrogenbased membrane biofilm reactor,' Chemosphere, 40, 24-34 (2006)
  54. Chung, J., Ryu, H., Abbaszadegan, M., and Rittmann, B. E., 'Community structure and function in an Hs-based membrane biofilm reactor capable of bio-reduction of selenate and chromate,' Appl. Microb. Biotechnol., 72, 1330-1339 (2006) https://doi.org/10.1007/s00253-006-0439-x
  55. Krajmalnik-Brown, R., Holscher, T., Thomson, I. N., Saunders, F. M., Ritalahti, K. M., and Loffler, F. E., 'Genetic identification of a putative vinyl chloride reductase in Dehalococcoides sp. strain BAV1,' Appl. Environ. Microb., 70, 6347-6351 (2004) https://doi.org/10.1128/AEM.70.10.6347-6351.2004
  56. He, J., Sung, Y., Krajmalnik-Brown, R., Ritalahti, K. M., and Loffler, R. E., 'Isolation and characterization of Dehalococcoides sp. Strain FL2, a trichlroroethene (TCE) and 1,2-dichloroethene-respiring anaerobe,' Environ. Microb., 7, 1442-1450 (2005) https://doi.org/10.1111/j.1462-2920.2005.00830.x
  57. Chung, J., Krajmalnik-Brown, R., and Rittmann, B. E., 'Bio-reduction of trichloroethene using a hydrogen-based Membrane biofilm reactor,' Environ. Sci. Technol., submitted
  58. Chung, J. and Rittmann, B. E., 'Bio-reductive dechlorination of 1,1,1-trichloroethane and chloroform using a hydrogen-based membrane biofilm reactor,' Biotechnol. Bioengr., 97, 52-60 (2007) https://doi.org/10.1002/bit.21212
  59. Chung, J., and Rittmann, B. E., 'Simultaneous bio-reduction of trichloroethene, trichloroethane, and chloroform using a hydrogenbased membrane biofilm reactor,' Wat. Sci. Technol., submitted
  60. Chang, C. C., Tseng, S. K., Chang, C. C., and Ho, C. M., 'Reductive dechlorination of 2-chlorophenol in a hydrogenotrophic, gaspermeable, silicone membrane bioreactor,' Bioresource Technol., 90, 323-328 (2003) https://doi.org/10.1016/S0960-8524(03)00149-4
  61. Downing, L., and Nerenberg, R., Kinetics of microbial bromate reduction in a hydrogenoxidizing, denitrifying biofilm reactor,' Biotechnol. Bioengr., 38, 499-506 (2007) https://doi.org/10.1002/bit.260380508
  62. Chung, J., Ahn, C.-H., Chen, Z., and Rittmann, B. E., 'Bio-reduction of N-nitrosodimethylamine (NDMA) using a hydrogengased membrane biofilm reactor,' Chemosphere, in press (2007)
  63. Chung, J., Nerenberg, R., and Rittmann, B. E., 'Simultaneous biological reduction of nitrate and perchlorate in brine water using the hydrogen-based membrane biofilm reactor,' J. Environ. Engr., 133, 157-164 (2007) https://doi.org/10.1061/(ASCE)0733-9372(2007)133:2(157)
  64. Rittmann, B. E., Nerenberg, R., Stinson, B., Katehis., D., Leong, E., and Anderson, H., 'Hydrogen-based membrane biofilm reactor for wastewater treatment,' Water Intelligence Online, No. 200504029, (2005)
  65. Daigger, G. T' Rittmann, B. E., Adham, S. S., and Andreottola, G., 'Are membrane bioreactors ready for widespread application?' Environ. Sci. Technol., 39, 399A-406A (2005) https://doi.org/10.1021/es049189v
  66. DeCarolis, J., Adham, S. S., and Hirani, Z., Evaluation of Newly Developed Membrane B ioreacator Systems for Water Reclamation-Phase 4. Final Report, Project No., 01- FC81-1157, United States Department of Interior, Bureau of Reclamation, Washington, DC (2007)
  67. Shin, J.-H., Sang, B.-I., Chung, Y.-C., and Choung, Y.-K., 'Feasibility study on the removal of nitrous compounds with a hollow-fiber membrane biofilm reactor', Water, Sci. Technol., 51 (6-7), 365-371 (2005)
  68. Shin, J.-H., Sang, B.-I., Chung, Y.-C., and Choung, Y.-K., 'The removal of nitrogen using an autotrophic hybrid hollow-fiber membrane biofilm reactor,' Desalination, 183, 447-545 (2005) https://doi.org/10.1016/j.desal.2005.03.045
  69. Shin, J .-H., Sang' B.-I., Chung, Y.-C., and Choung Y.-K., 'A novel CSTR-type of hollow fiber membrane biofilm reactor for consecutive nitrification and denitrification,' Desalination, in press (2007)
  70. Onishi, H., Mumazawa, R., and Takeda, H., Process and Apparatus for Water Treatment, U. S. Patent 4,181,604 (1980)
  71. Onishi, H., and Numazawa, R., Biochemical Process for Purifying Contaminated Water, U. S. Patent 4,746,435 (1998)
  72. Hibiya, K., Terada, A., Tsuneda, S., and Hirata, A., 'Simultaneous nitrification and denitrification by controlling vertical and horizontal microenvironment in a membrane aerated biofilm reactor,' J. Biotechnol., 100 (1): 23-32 (2003) https://doi.org/10.1016/S0168-1656(02)00227-4
  73. Semmens, M. J., Dahm, K., Shanahan, J., and Christianson, A., 'COD and nitrogen removal by biofilms growing on gas permeable membranes,' Water Res., 37, 4343-4350 (2003) https://doi.org/10.1016/S0043-1354(03)00416-0
  74. Satoh, H., Ono, H., Rulin, B, Kamo, J., Okabe, S., and Fukushi, K.-I., 'Macroscale and microscale analyses of nitrification and denitrification in biofilms attached on membrane aerated biofilm reactors,' Water Res., 38, 1633-1641 (2004) https://doi.org/10.1016/j.watres.2003.12.020
  75. Jacome, A., Molina, J., Suarez, J., and Tejero, I., 'Simultaneous removal of organic matter and nitrogen compounds in autoaerated biofilms,' J. Environ. Engr., 132, 1255-1263 (2006) https://doi.org/10.1061/(ASCE)0733-9372(2006)132:10(1255)
  76. LaPara, T. M., Cole, A. C., Shanahan, J. W., and Semmens, M. J., 'The effects of organic carbon, ammonical-nitrogen, and oxygen partial pressure of the stratification of membrane-aerated biofilms,' J. Indust. Microb. Biotech., 33, 315-323 (2006) https://doi.org/10.1007/s10295-005-0052-5

피인용 문헌

  1. Environmental Biotechnology in Water and Wastewater Treatment vol.136, pp.4, 2010, https://doi.org/10.1061/(ASCE)EE.1943-7870.0000140
  2. Hydrogen-Based Nitrate and Selenate Bioreductions in Flue-Gas Desulfurization Brine vol.137, pp.1, 2011, https://doi.org/10.1061/(ASCE)EE.1943-7870.0000288
  3. Crystal ball - 2011 vol.4, pp.2, 2011, https://doi.org/10.1111/j.1751-7915.2010.00245.x
  4. Performance of a Sulfide-Oxidizing, Sulfur-Producing Membrane Biofilm Reactor Treating Sulfide-Containing Bioreactor Effluent vol.45, pp.9, 2011, https://doi.org/10.1021/es200140c
  5. Managing methanogens and homoacetogens to promote reductive dechlorination of trichloroethene with direct delivery of H2 in a membrane biofilm reactor vol.109, pp.9, 2012, https://doi.org/10.1002/bit.24487
  6. A biofilm model to understand the onset of sulfate reduction in denitrifying membrane biofilm reactors vol.110, pp.3, 2012, https://doi.org/10.1002/bit.24755
  7. Effect of particle size distribution in wastewater on the performance of nutrient removal process vol.46, pp.1-3, 2012, https://doi.org/10.1080/19443994.2012.677520
  8. A Steady-State Biofilm Model for Simultaneous Reduction of Nitrate and Perchlorate, Part 1: Model Development and Numerical Solution vol.46, pp.3, 2012, https://doi.org/10.1021/es203129s
  9. Effects of Multiple Electron Acceptors on Microbial Interactions in a Hydrogen-Based Biofilm vol.47, pp.13, 2013, https://doi.org/10.1021/es401310j
  10. Using a Two-Stage Hydrogen-Based Membrane Biofilm Reactor (MBfR) to Achieve Complete Perchlorate Reduction in the Presence of Nitrate and Sulfate vol.47, pp.3, 2013, https://doi.org/10.1021/es303823n
  11. The study of electron equivalent fluxes about decomposition of sulfamethazine and sulfathiazole using oxygen-based membrane biofilm reactor vol.51, pp.22-24, 2013, https://doi.org/10.1080/19443994.2013.770262
  12. In situ hydrogen utilization for high fraction acetate production in mixed culture hollow-fiber membrane biofilm reactor vol.97, pp.23, 2013, https://doi.org/10.1007/s00253-013-5281-3
  13. Nitrate in Potable Water Supplies: Alternative Management Strategies vol.44, pp.20, 2014, https://doi.org/10.1080/10643389.2013.828272
  14. Pyrosequencing Analysis Yields Comprehensive Assessment of Microbial Communities in Pilot-Scale Two-Stage Membrane Biofilm Reactors vol.48, pp.13, 2014, https://doi.org/10.1021/es5012466
  15. Nitrate Shaped the Selenate-Reducing Microbial Community in a Hydrogen-Based Biofilm Reactor vol.48, pp.6, 2014, https://doi.org/10.1021/es4053939
  16. Complete Perchlorate Reduction Using Methane as the Sole Electron Donor and Carbon Source vol.49, pp.4, 2015, https://doi.org/10.1021/es504990m
  17. Mining-Related Selenium Contamination in Alaska, and the State of Current Knowledge vol.7, pp.3, 2017, https://doi.org/10.3390/min7030046
  18. Water quality assessment of groundwater treated with a membrane biofilm reactor vol.101, pp.12, 2009, https://doi.org/10.1002/j.1551-8833.2009.tb10012.x
  19. Bacterial biofilm-community selection during autohydrogenotrophic reduction of nitrate and perchlorate in ion-exchange brine vol.81, pp.6, 2009, https://doi.org/10.1007/s00253-008-1797-3
  20. Decompostion of pharmaceuticals (sulfamethazine and sulfathiazole) using oxygen-based membrane biofilm reactor vol.250, pp.2, 2010, https://doi.org/10.1016/j.desal.2008.11.035
  21. Biodegradation of Acid Orange 7 and its auto-oxidative decolorization product in membrane-aerated biofilm reactor vol.67, pp.None, 2007, https://doi.org/10.1016/j.ibiod.2011.12.003
  22. Enhancing biodegradation of C16-alkyl quaternary ammonium compounds using an oxygen-based membrane biofilm reactor vol.123, pp.None, 2007, https://doi.org/10.1016/j.watres.2017.07.003
  23. Development of a novel palm fiber biofilm electrode reactor (PBER) for nitrate-contaminated wastewater treatment: performance and mechanism vol.6, pp.3, 2007, https://doi.org/10.1039/c9ew00919a
  24. Enhanced carbon-transfer and -utilization efficiencies achieved using membrane carbonation with gas sources having a range of CO2 concentrations vol.52, pp.None, 2007, https://doi.org/10.1016/j.algal.2020.102098
  25. Lumen air pressure (LAP) affecting greywater treatment in an oxygen-based membrane biofilm reactor (O2-MBfR) vol.270, pp.None, 2007, https://doi.org/10.1016/j.chemosphere.2021.129541
  26. Removal kinetics of linear alkylbenzene sulfonate in a batch-operated oxygen based membrane biofilm reactor treating greywater: Quantitative differentiation of adsorption and biodegradation vol.806, pp.p1, 2007, https://doi.org/10.1016/j.scitotenv.2021.150523