직접결합방식 수정진동자 면역센서에 의한 C-Reactive Protein 검출

Detection of C-Reactive Protein Using Direct-binding Quartz Crystal Microbalance Immunosensor

  • Kim, N. (Food Nano-Biotechnology Research Center, Korea Food Research Institute) ;
  • Kim, D.K. (Food Nano-Biotechnology Research Center, Korea Food Research Institute) ;
  • Cho, V.J. (Food Nano-Biotechnology Research Center, Korea Food Research Institute)
  • 발행 : 2007.12.31

초록

관상심장질환 바이오마커의 하나인 CRP를 batch형 수정진동자 면역센서에 의하여 다음과 같이 분석하였다. 센서시스템의 작동은 직접결합방식에 의하여 행하였으며 CRP에 대한 항체의 최적 고정화농도는 $50{\mu}g/ml$이었다. 시스템의 반응완충용액으로 0.1 M 인산완충용액 (pH 7.0)을 사용하였고 시스템 작동은 baseline 안정화, 시료첨가 및 측정, 10 mM NaOH에 의한 센서 칩 재생의 순으로 행하였다. 이중로그척도로 표시하였을 때 0.27-106.00 nM 범위의 쥐 유래 CRP에 대하여 센서반응과 직선상의 관계를 이루었으며 센서의 검출한계는 0.53 nM이었고 재사용성도 양호하였다.

A prognostic indicator of coronary heart disease, C-reactive protein, was tried to be determined by a batch-type quartz crystal microbalance immunosensor. The sensor was operated by direct-binding mode and the optimum concentration for the corresponding antibody for immobilization was $50{\mu}g/ml$. The reaction buffer for the system was 0.1 M sodium phosphate (pH 7.0) and system operation was performed in the order of baseline stabilization, analyte addition and measurement, and regeneration of the sensor chip with 10 mM NaOH. When plotted in double-logarithmic scale, the sensor showed a linear detection range of 0.27-106.00 nM for rat C-reactive protein with the limit of detection of 0.53 nM. It also showed a good reusability.

키워드

참고문헌

  1. Nicolle, C., Cardinault, N., Gueux, E., Jaffrelo, L., Rock, E., Mazur, A., Amouroux, P., and C. Rémésy (2004), Health effect of vegetable-based diet: lettuce consumption improves cholesterol metabolism and antioxidant status in the rat, Clin. Nutr. 23, 605-614 https://doi.org/10.1016/j.clnu.2003.10.009
  2. Sapsford, K. E., Charles, P. T., Patterson Jr., C. H., and F. S. Ligler (2002), Demonstration of four immunoassay formats using the array biosensor, Anal. Chem. 74, 1061-1068 https://doi.org/10.1021/ac0157268
  3. Weinhold, B. and U. Rüther (1997), Interleukin-6-dependent and independent regulation of the human C-reactive protein gene, Biochem. J. 327, 425-429 https://doi.org/10.1042/bj3270425
  4. Rifai, N. and P. M. Ridker (2001), High-sensitivity C-reactive protein: a novel and promising marker of coronary heart disease, Clin. Chem. 47, 403-411
  5. Wolf, M., Juncker, D., Michel, B., Hunziker, P., and D. Emmanuel (2004), Simultaneous detection of C-reactive protein and other cardiac markers in human plasma using micromosaic immunoassays and self-regulating microfluidic networks, Biosens. Bioelectron. 19, 1193-1202 https://doi.org/10.1016/j.bios.2003.11.003
  6. Gabay, C. and I. N. Kushner (1999), Acute-phase proteins and other systemic responses to inflammation, New Engl. J. Med. 340, 448-454 https://doi.org/10.1056/NEJM199902113400607
  7. Parra, M. D., Tuomola, M., Cabezas-Herrera, J., and J. J. Ceron (2005), Use of a time-resolved immunofluorometric assay for determination of canine c-reactive protein concentrations in whole blood, Am. J. Vet. Res. 1, 62-66
  8. Dominichi, R., Luraschi, P., and C. Franzini (2004), Measurement of c-reactive protein: Two high sensitivity methods compared, J. Clin. Lab. Anal. 18, 280-284 https://doi.org/10.1002/jcla.20038
  9. Clarke, J. L., Anderson, J. L., Carlquist, J. F., Roberts, R. F., Horne, B. D., Bair, T. L., Kolek, M. J., Mower, C. P., Crane, A. M., Roberts, W. L., and J. B. Muhlestein (2005), Comparison of differing c-reactive protein assay methods and their impact on cardiovascular risk assessment, Am. J. Cardiol. 1, 155-158
  10. Meyer, M. H. F., Hartmann, M., Krause, H.-J., Blankenstein, G., Mueller-Chorus, B., Oster, J., Miethe, P., and M. Keusgen (2007), CRP determination based on a novel magnetic biosensor, Biosens. Bioelectron. 22, 973-979 https://doi.org/10.1016/j.bios.2006.04.001
  11. Park, I.-S. and N. Kim (1998), Thiolated Salmonella antibody immobilization onto the gold surface of piezoelectric quartz crystal, Biosens. Bioelectron. 13, 1091-1097 https://doi.org/10.1016/S0956-5663(98)00067-0
  12. Babacan, S., Pivarnik, P., Letcher, S., and A. G. Rand (2000), Evaluation of antibody immobilization methods for piezoelectric biosensor application, Biosens. Bioelectron. 15, 615-621 https://doi.org/10.1016/S0956-5663(00)00115-9
  13. Martin, S. P., Lynch, J. M., and S. M. Reddy (2002), Optimisation of the enzyme-based determination of hydrogen peroxide using the quartz crystal microbalance, Biosens. Bioelectron. 17, 735-739 https://doi.org/10.1016/S0956-5663(02)00057-X
  14. Kim, N., Park, I.-S., and D.-K. Kim (2007), High-sensitivity detection for model organophosphorus and carbamate pesticide with quartz crystal microbalance-precipitation sensor, Biosens. Bioelectron. 22, 1593-1599 https://doi.org/10.1016/j.bios.2006.07.009
  15. Park, I.-S. and N. Kim (1999), Rapid detection of Salmonella spp. by antibody immobilization with gold-protein A complex, Korean J. Food Sci. Technol. 31, 1-6
  16. Kim, N., Park, I.-S., and D.-K. Kim (2004), Characteristics of a label-free piezoelectric immunosensor detecting Pseudomonas aeruginosa, Sens. Actuators B: Chem. 100, 432-438 https://doi.org/10.1016/j.snb.2004.02.014
  17. G. Sauerbrey (1959), Verwendung von Schwingquarzen zur Wagung dünner Schichten und zur Mikrowagung, Z. Phys. 155, 206-222 https://doi.org/10.1007/BF01337937
  18. Meyer, M. H. F., Hartmann, M., and M. Keusgen (2006), SPR-based immunosensor for the CRP detection- A new method to detect a well known protein, Biosens. Bioelectron. 21, 1987-1990 https://doi.org/10.1016/j.bios.2005.09.010
  19. Vikholm-Lundin, I. and W. M. Albers (2006), Site-directed immobilisation of antibody fragments for detection of C-reactive protein, Biosens. Bioelectron. 21, 1141-1148 https://doi.org/10.1016/j.bios.2005.04.011
  20. Pyun, J. C., Beutel, H., Meyer, J.-U., and H. H. Ruf (1998), Development of a biosensor for E. coli based on a flexural plate wave (FPW) transducer, Biosens. Bioelectron. 13, 839-845 https://doi.org/10.1016/S0956-5663(98)00050-5
  21. Minunni, M. and M. Mascini (2000), A piezoelectric biosensor as a direct affinity sensor, In Optical Sensors and Microsystems. New Concepts, Materials, Technologies, S. Martellucci, A. N. Chester, and A. G. Mignani, Eds., p. 143, Kluwer Academic Publishers/Plenum Press, New York