Effect of Glycine Betaine on Follicle-Stimulating Hormone Production by Chinese Hamster Ovary Cells at Low Culture Temperature

CHO 세포의 저온배양에서 Glycine Betaine이 재조합 FSH의 생산에 미치는 영향

  • 윤성관 (LG생명과학 바이오연구소) ;
  • 안용호 (LG생명과학 바이오연구소)
  • Published : 2007.04.30

Abstract

Suspension culture of recombinant Chinese hamster ovary (CHO) cells producing follicle-stimulating hormone was performed to investigate the effect of glycine betaine on cell growth and FSH production at low culture temperature. At 28$^{\circ}C$, cell growth was suppressed, but cell viability remained high for a longer culture period. When the culture temperature was lowered from 37$^{\circ}C$ to 28$^{\circ}C$, more than 14-fold increase in the maximum FSH titer was achieved. In batch culture at 28$^{\circ}C$, the use of 15 mM glycine betaine (GB) to culture medium resulted in the enhancement of maximum cell density and FSH titer by 11% and 17%, respectively, compared to the culture without GB. In pseudo-perfusion culture at 28$^{\circ}C$ with the exchange of fresh medium containing 15 mM GB, a final FSH of $2,058{\mu}g$ which is approximately 1.4-fold higher as compared to the culture without GB was obtained. This enhanced FSH production with 15 mM GB was not just because of enhanced specific FSH productivity (qFSH), but mainly because of the extended culture longevity. Taken together, this result demonstrates that the application of GB at low culture temperature is feasible to enhance the production of recombinant proteins in rCHO cells.

본 연구에서는 FSH를 생산하도록 유전자 조작된 CHO 세포의 저온배양이 세포성장과 FSH의 생산에 미치는 영향을 알아보았다. 28$^{\circ}C$에서 배양하였을 때 세포의 성장은 억제되었으나 37$^{\circ}C$에서의 배양에 비하여 세포생존율이 더 오랫동안 높게 유지되었고 최대 FSH의 양도 14배 증가하였다. 28$^{\circ}C$에서의 회분식 배양의 경우 배지에 15 mM의 GB를 첨가하였을 때 최대세포농도와 FSH 양은 GB를 첨가하지 않았을 때에 비하여 각각 11%, 17% 증가하였다. 28$^{\circ}C$에서의 유사배지 교환식 배양의 경우 15 mM의 GB를 포함하는 배지를 교환하였을 때 세포생존율이 GB를 포함하지 않는 배지를 교환하였을 때에 비하여 더 높게 오랫동안 유지되어 최종적으로 배양기간을 4일간 더 연장할 수 있었다. 이러한 배양기간의 연장으로 인하여 15 mM의 GB를 포함하는 배지를 교환하는 유사배지 교환식 배양에서 총 $2,058{\mu}g$의 FSH를 얻었고 이는 GB를 포함하지 않는 배지를 교환하는 유사배지 교환식 배양에 비하여 1.4배 증가한 것이다. 본 연구를 통하여 저온배양에 있어서 배지에 GB를 첨가함으로써 CHO 세포에서의 재조합단백질 생산을 증대시킬 수 있다는 것을 알았다.

Keywords

References

  1. Kurano, N., C. Leist, F. Messi, S. Kurano, and A. Fiechter (1990), Growth behavior of Chinese hamster ovary cells in a compact loop bioreactor: 1. Effects of physical and chemical environments, J. BiotechnoI. 15, 101-112 https://doi.org/10.1016/0168-1656(90)90054-F
  2. Borys, M. C., D. I. H. Linzer, and E.T. Papoutsakis (1993), Culture pHaffects expression rates and glycosylation of recombinant mouse placental lactogen proteins by Chinese hamster ovary (CHO) cells, Bio/Technology 11, 720-724 https://doi.org/10.1038/nbt0693-720
  3. Kimura, R. and W. M. Miller (1996), Effects of elevated $pCO_2$ and/or osmolality on the growth and recombinant tPA production of CHO cells, Biotechnol. Bioeng. 52, 152-160 https://doi.org/10.1002/(SICI)1097-0290(19961005)52:1<152::AID-BIT15>3.0.CO;2-Q
  4. Furukawa, K., and K. Ohsuye (1998), Effect of culture temperature on a recombinant CHO cell line producing a C-terminal a-amidating enzyme. Cytotechnology 26, 153-164 https://doi.org/10.1023/A:1007934216507
  5. Fox, S. R., U. A. Patel, M. G. S. Yap, and D. I.C. Wang (2004), Maximizing $interferon-{\gamma}$ production by Chinese hamster ovary cells through temperature shift optimization: Experimental and modeling, BiotechnoI. Bioeng. 85, 177-184 https://doi.org/10.1002/bit.10861
  6. Schatz, S. M., R. J. Kerschbaumer, G. Gerstenbauer, M. Kral, F. Domer, and F. Scheiflinger (2003), Higher expression of Fab antibody fragments in a CHU cell line at reduced temperature, Biotechnol. Bioeng. 84, 433-438 https://doi.org/10.1002/bit.10793
  7. Yoon, S. K., J. Y. Song, and G. M. Lee (2003), Effect of low culture temperature on specific productivity, transcription level, and heterogeneity of erythropoietin in Chinese hamster ovary cells, Biotechnol. Bioeng. 82, 289-298 https://doi.org/10.1002/bit.10566
  8. Kim, T. K., J. S. Ryu, J. Y. Chung, M. S. Kim, and G. M. Lee (2000), Osmoprotective effect of glycine betaine on thrombopoietin production in hyperosmotic Chinese hamster ovary cell culture: Clonal variations, Biotechnol. Prog. 16, 775-781 https://doi.org/10.1021/bp000106y
  9. Ryu, J. S., T. K. Kim, J. Y. Chung, and G. M. Lee (2000), Osmoprotective effect of glycine betaine on foreign protein production in hyperosmotic recombinant Chinese hamster ovary cell cultures differs among cell lines, Biotechnol. Bioeng. 70, 167-175 https://doi.org/10.1002/1097-0290(20001020)70:2<167::AID-BIT6>3.0.CO;2-P
  10. Oyaas, K., T. E. Ellingsen, N. Dyrset, and D. W. Levine (1994), Hyperosmotic hybridomacell cultures: increased monoclonal antibody production with addition of glycine betaine, Biotechnol, Bioeng. 44, 991-998 https://doi.org/10.1002/bit.260440816
  11. Chen, W. P., P. H. Li, and H. H. Chen (2000), Glycinebetaine increases chilling tolerance and reduces chilling-induced lipid peroxidation in Zea mays L., Plant. Cell and Environment 23, 609-618 https://doi.org/10.1046/j.1365-3040.2000.00570.x
  12. Holmstrom, K.-O., S. Somersalo, A. Mandal, T. E. Palva, and B. Welin (2000), Improved tolerance to salinity and low temperature in transgenic tobacco producing glycine betaine, J. Experimental Botany 51, 177-185 https://doi.org/10.1093/jexbot/51.343.177
  13. Sakamoto, A. and N. Murata (2002), The role of glycine betaine in the protection of plants from stress: clues from transgenic plants, Plant, Cell and Environment 25, 163-171 https://doi.org/10.1046/j.0016-8025.2001.00790.x
  14. Renard, J. M., R. Spagnoli, C. Mazier, M. F. Salles, and E. Mandine (1988), Evidence that monoclonal antibody production kinetics is related to the integral of viable cells in batch systems, Biotechnol. Lett. 10, 91-96 https://doi.org/10.1007/BF01024632