Exo-Polysaccharide Production from Liquid Culture of Lentinus edodes

Lentinus edodes 액체배양을 통한 세포외 다당체 생산

  • Lee, Hee-Hwan (Department of Bioengineering and Technology, Kangwon National University) ;
  • Cho, Jae-Youl (School of Biotechnology and Bioengineering, Kangwon National University) ;
  • Hong, Eock-Kee (Department of Bioengineering and Technology, Kangwon National University)
  • 이희환 (강원대학교 생물공학과) ;
  • 조재열 (강원대학교 바이오산업공학부) ;
  • 홍억기 (강원대학교 생물공학과)
  • Published : 2007.02.28

Abstract

The optimum liquid culture conditions were investigated for cell growth and polysaccharide production from liquid culture of Lentinus edodes. In flask culture, the optimal medium compositions for the polysaccharide production contained glucose 60 g/L, yeast extract 10 g/L, $KH_2PO_4$ 2.0 g/L, and $MgSO_4{\cdot}7H_2O$ 1.0 g/L. The maximum mycelial growth and polysaccharide production were 11.01 g/L and 1.64 g/L, respectively. In bioreactor, through the variation of aeration in order to increase mycelial growth and polysaccharide production, the maximum mycelial growth and polysaccharide production were 55.9 g/L at 8th day and 7.34 g/L at 7th day of cultivation with 1.5 vvm, respectively.

Lentinus edodes의 액체배양을 통하여 균사체 및 polysaccharide의 최적 생산조건을 조사하였다. 플라스크 배양을 통하여 검토된 균체량 및 polysaccharede 생성을 위한 최적 배지의 조성은 glucose 60 g/L, yeast extract 10 g/L, $KH_2PO_4$ 2.0 g/L, $MgSO_4{\cdot}7H_2O$ 1.0 g/L이었다. 최대 균체량은 배양 10일째 11.01 g/L이었으며 최대 polysaccharide 생성량은 배양 6일째 1.64 g/L를 나타내었다. 생물반응기를 이용한 회분배양에서 균사체와 polysaccharide 생산량을 증가시키기 위하여 통기량을 조절하였다. 그 결과 통기량이 증가할수록 균체량과 polysaccharide의 생성량이 증가하였다. 결과적으로 통기량을 1.5 vvm으로 하여 배양하였을 때 배양 8일째 55.9 g/L의 균체량과 배양 7일째 7.34 g/L의 polysaccharide로 최대생성량을 얻을 수 있었다.

Keywords

References

  1. Sung, J. M., Y. B. Yu, and D. Y. Cha (1998), Mushroom Science, p393, Kyo-Hak Publishing Co., Ltd., Seoul
  2. Lee, J. Y. and S. W. Hong (1985), Illustrated Flora & Fauna of Korea, Vol. 28, Ministry of Education, Seoul
  3. Chihara, G. (1985), Immune modulation agents and their mechanisms (Lentinan, a T-cell oriented immunopotentiator), NY and Basel. 19, 409-436
  4. Takehara, M. (1979), Antiviral activity of virus-like particles from Lentinus edodes (Shiitake), Arch Virol. 59, 269-280 https://doi.org/10.1007/BF01317423
  5. Mori, H., K. Aizawa, T. Inakuma, A. Ichii, R. Yamauchi, and K. Kato (1998), Structural analysis of the ${\beta}-D-glucan$ from the fruit-body of Hericium erinaceum, J. Appl. Glycosci. 45, 361-365
  6. Wang Z., D. Luo, and Z. Liang (2004), Structure of polysaccharides from the fruiting body of Hericium erinaccus Pers, Carbohydrose Polymers 57, 241-247 https://doi.org/10.1016/j.carbpol.2004.04.018
  7. Oh-Hashi, T., T. Kataoka, and S. Tsugagoshi (1976), Effect of combinded use of anticancer drugs with a polysaccharide preparation, Krestin, on mouse leukemia P388, Cann. 67, 713
  8. Samamoto, R., T. Niimi, and S. Takahashi (1978), Effect of carbon and nitrogen sources on submerged culture of edible fungi, Agric, BioI. Chem. 52, 75-81
  9. Braun, S. and S. E. Vecht-J.ifshitz (1991), Mycelial morphology and metabolite production, Trends in Biotechnol. 9, 63-68 https://doi.org/10.1016/0167-7799(91)90191-J
  10. Roles, A. J., V. Verg, and R. M. Voncken (1974), Rheology of mycelial broth, Biotechnol. Bioeng. 16, 181-208 https://doi.org/10.1002/bit.260160204
  11. Choi, J. H., S. Y. Kim, D. K. Oh, and J. H. Kim (1998), Optimization of culture conditions for production of a high viscosity polysaccharide, methylan, by Methylobacterium organophilum from methanol, Kor. J. Appl. Microbiol. Biotechnol. 26, 244-249
  12. Yang, S. N., S. W. Beak, and N. K. Kim (2000), Effect of aeration and agitation rates on pullulan production, J. Kor. Indus. Chem. Eng. 38, 556-559
  13. Park, K. S. and B. L. Lee (1997), Extraction and separation of protein-bound polysaccharide by Lentinus edodes, Kor. J. Food Nutr. 10, 503-508
  14. Lee, B. W., G. H. lm, D. W. Kim, K. M. Park, S. H. Son, and T. H. Shon (1993), Culture characteristics and pilot scale fermentation for the submerged mycelial culture of Lentinus edodes, Kor. J. Appl. Microbiol. Biotechnol. 21, 609-614