DOI QR코드

DOI QR Code

담배 유식물의 생장과 Rubisco에 미치는 카드뮴의 효과에 대한 질산염의 영향

Influence of Nitrate Against Effect of Cadmium on Growth and Rubisco in Seedling of Tobacco.

  • 발행 : 2007.05.25

초록

담배 유식물의 생장, 엽록소 및 광합성 효소에 대한 카드뮴과 질산염의 영향에 대해 연구하였다. 카드뮴에 의한 억제된 생장은 질산염에 의해 회복되지 않았다. 엽록소 a와 b의 함량은 카드뮴에 의해 감소하였으며, 카드뮴과 질산염 혼합처리구는 카드뮴 처리구보다 엽록소 함량이 감소하였다. 카드윰 처리구에서의 rubisco의 활성과 함량은 대조구에서의 함량보다 현저히 작았다. 이는 rubisco의 활성이 함량과 연관되어 있으며, rubisco의 활성화와 합성이 카드뮴에 의해 저해된다는 것을 의미한다. 카드뮴에 의해 감소된 rubisco의 활성과 함량은 질산염에 의해 더욱 더 감소되었다. 이와 비슷한 변화가 rubisco activase의 활성과 함량에서도 관찰되었다. 이 결과들은 카드뮴과 질산염에 의해 유도되는 rubisco의 변화가 rubisco activase와 서로 연관되어 있음을 의미하며, 질산염은 직접적으로 rubisco의 활성화와 합성에 관여 할 뿐만 아니라 rubisco activase를 통해서도 rubisco의 수준에 관여하는 것으로 해석된다.

This investigation was performed to study the influence of Cd and nitrate on growth, and chlorophyll and photosynthetic enzymes in seedling of tobacco. Growth inhibition by Cd was not recovered by nitrate. Chlorophyll levels were reduced by Cd. The combination of Cd and low concentration of nitrate decreased the chlorophyll content compared to that in plants exposed only to Cd. Activity and content of rubisco at Cd treatment was significantly lesser than in plants receiving no treatment, These data suggest that rubisco activity was associated with an amount of rubisco protein, and that the activation and synthesis of rubisco is inhibited by Cd. Both the activity and content of rubisco decreased by Cd were more decreased by nitrate. A similar change pattern was also observed in activity and content of rubisco activase. These results suggest that Cd- and nitrate-induced changes of rubisco could be correlated with rubisco activase, and that nitrate was concerned in not only the activation and synthesis of rubisco directly, but also rubisco activase leading to a large change in rubisco.

키워드

참고문헌

  1. Bodddi, B., A. R. Oravecz and E. Lehoczki. 1995. Effect of cadmium on organization and photoreduction of proto-chlorophyllide in dark-grown leaves and etioplast inner membrane preparations of wheat. Photosynthetica 31, 411-420
  2. Catalado, D. A., T. R. Garland and R. E. Wildung. 1981. Cadmium distribution and chemical fate in soybean plants. Plant Physiol. 68, 835-839 https://doi.org/10.1104/pp.68.4.835
  3. Catt, J. W. and P. Millard. 1988. The measurement of ribulose l,5-bisphosphate carboxylase/oxygenase concentration in the leaves of potato plants by enzyme linked immunosorbtion assays. J. Exp. Bot. 39, 157-164 https://doi.org/10.1093/jxb/39.2.157
  4. Chen, Y. and A. J. Huerta. 1997. Effect of sulfur nutrition on photosynthesis in cadmium-treated barley seedlings. J. Plant Nutrition 20, 845-856 https://doi.org/10.1080/01904169709365300
  5. Cousson, A. and K. Van Iran Thanh. 1993. Influence of ionic composition of the culture medium on de novo flower formation in tobacco thin cell layers. Can. J. Botany 71, 506-511 https://doi.org/10.1139/b93-055
  6. Downton, W. J. S., O. Bjorkman and C. S. Pike. 1980. Consequences of increased atmospheric concentrations of carbon dioxide for growth and photosynthesis of higher plant. pp. 143-151, In Pearman, G. I. (ed.), Carbon Dioxide and Climate, Australian Research, Australian Academy of Sczience, Canberra, Australia
  7. Dube, S. L. and J. F. Bornman. 1992. Response of spruce seedlings to simultaneous exposure to ultraviolet-B radiation and cadmium. Plant Physiol. Biochemistry 30, 761-767
  8. Huffaker, R. C. 1982. Biochemistry and physiology of leaf protein. pp 370-400, In Boultrer, D. and Parthier (eds.), Encyclopedia of Plant Physiology, New Series Vol. 14A, Springer-Verlag, Berlin
  9. Inskeep, W. P. and P. R. Bloom. 1985. Extinction coefficients of chlorophyll a and b in N, N-dimethylforma¬mide and 80% acetone. Plant Physiol. 77, 483-485 https://doi.org/10.1104/pp.77.2.483
  10. Larsson, E., H. Bornman and H. Asp. 1998. Influence of UV-B radiation and $Cd^{2+}$ on chlorophyll fluorescence, growth and nutrient content in Brassica napus. J. Exp. Bot. 49, 1031-1039 https://doi.org/10.1093/jexbot/49.323.1031
  11. Leong, T. Y. and J. Anderson. 1984. Adaptation of the thylakoid membranes of pea chloroplasts to light intensities. I . Study on the distribution of chlorophyll-protein complexes. Photosynth. Res. 5, 105-115 https://doi.org/10.1007/BF00028524
  12. Makino, A., T. Mae and K. Ohira. 1983. Photosynthesis and ribulose 1,5-bisphosphate carboxylase in rice leaves. Changes in photosynthesis and enzymes involved in carbon assimilation from leaf development through senescence. Plant Physiol. 73, 1002-1007 https://doi.org/10.1104/pp.73.4.1002
  13. Mendelssohn, I. A., K. L. Mckee and T. Kong. 2001. A comparison of physiological indicators of sublethal cadmium stress in wetland plants. Environ. Exp. Bot. 46, 263-275 https://doi.org/10.1016/S0098-8472(01)00106-X
  14. Miziorko, H. M. and G. H. Lorimer. 1983. Ribulose-1,5-bisphosphate carboxylase- oxygenase. Annu. Rev. Biochem. 52, 507-535 https://doi.org/10.1146/annurev.bi.52.070183.002451
  15. Murashige, T. and F. Skoog. 1962. A revised medium for growth and bioassays with tobacco tissue culture. Physiol. Plant 15, 473-497 https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
  16. Nigra, H. M., M. A. Alvarez and A. M. Giulietti. 1990. Effect of carbon and nitrogen source on growth and solasodine production in batch suspension cultures of Solanum eleagnifolium Acv. Plant Cell Tissue Organ Culture 21, 55-60 https://doi.org/10.1007/BF00034492
  17. Olmos, E., J. R. Martinez-Solano, A. Piqueras and E. Hellin. 2003. Early steps in the oxidative burst induced by cadmium in cultured tobacco cells (BY-2 line). J. Exp. Bot. 54, 291-301 https://doi.org/10.1093/jxb/54.381.291
  18. Ouariti, O., N. Boussama, M. Zarrouk, A. Cherif and M. H. Ghorbal. 1997. Cadmium- and copper-induced changes in tomato membrane lipids. Phytochemistry 45, 1343-1350 https://doi.org/10.1016/S0031-9422(97)00159-3
  19. Pankovic, D., M. Plesnicar, I. Arsenijevic-Maksimovic, N. Petrovic, Z. Sakac and R. Kastori. 2000. Effects of nitrogen nutrition on phosynthesis in Cd-treated sunflower plants. Annals Botany 86, 841-847 https://doi.org/10.1006/anbo.2000.1250
  20. Portis, A. R. Jr. 1992. Regulation of ribulose l.5-bisphosphate carboxylase/oxygenase activity. Annu. Rev. Plant Physiol. Plant Mol. Biol. 43, 415-437 https://doi.org/10.1146/annurev.pp.43.060192.002215
  21. Portis, A. R. Jr. 2003. Rubisco activase: Rubisco's catalytic chaperone. Photosynth. Res. 75, 11-27 https://doi.org/10.1023/A:1022458108678
  22. Prasad, M. N. V. 1995. Cadmium toxity and tolerance in vascular plants. Environ. Exp. Bot. 35, 525-545 https://doi.org/10.1016/0098-8472(95)00024-0
  23. Racker, E. 1962. Ribulose diphosphate carboxylase from spinach leaves. Methods Enzymol. 5, 266-270 https://doi.org/10.1016/S0076-6879(62)05216-7
  24. Robinson, S. P. and A. R. Portis Jr. 1989. Adenosine triphosphate hydrolysis by purified rubisco activase. Arch. Biochem. Biophys. 268, 93-99 https://doi.org/10.1016/0003-9861(89)90568-7
  25. Roh, K. S. and H. S. Chin. 2005. Cadmium toxicity and calcium effect on growth and photosynthesis of tobacco. J. Life Science 15, 453-460 https://doi.org/10.5352/JLS.2005.15.3.453
  26. Sandalio, L. M., H. C. Dalurzo, M. Gomez, M. C. Romero-Puertas and L. A. Del Rio. 2001. Cadmium-induced changes in the growth and oxidative metabolism of pea plants. J. Exp. Bot. 52, 2115-2126 https://doi.org/10.1093/jexbot/52.364.2115
  27. Sathyanarayana, B. N. and J. Blake. 1994. The effect of nitrogen sources and initial pH of the media with or without buffer on in vitro rooting of jack fruit. pp 77-82, In Lumsden, P. J., J. R. Nicholas and W. J. Davies (eds.). Physiology, Growth and Development of Plants in Culture. Kluwer Academic Publishers, Netherlands
  28. Shah, K. and R. S. Dubey. 1995. Effect of cadmium on RNA level as well as activity and molecular forms of ribonuclease in growing rice seedlings. Plant Physiol. Biochem. 33, 577-584
  29. Shaw, B. P. 1995. Effects of mercury and cadmium on the activities of antioxidative enzymes in the seedlings of Phaseolus vulgaris. Biologica Plantarum 37, 587-596 https://doi.org/10.1007/BF02908843
  30. Siedlecka, A. and Z. Krupa. 1996. Interaction between cadmium and iron and its effects on photosynthetic capacity of primary leaves of Phaseolus vulgaris. Plant Physiol. Biochem. 34, 833-841
  31. Stiborova, M. 1988. $Cd^{2+}$ ions affect the quaternary structure of ribulose- 1,5-bisphosphate carboxylase from barley leaves. Biochemia Physiologia Pflanzen 183, 371-378 https://doi.org/10.1016/S0015-3796(88)80045-3
  32. Stobart, A. K., W. T. Criffiths, I. Ameen-Bukhari and R. P. Sherwood. 1985. The effect of $Cd^{2+}$ on the biosynthesis of chlorophyll in leaves of barley. Physiol. Plant 63, 293-298 https://doi.org/10.1111/j.1399-3054.1985.tb04268.x
  33. Streusand, V. J. and A. R. Portis Jr. 1987. Rubisco activase mediates ATP- dependent activation of ribulose bisphosphate carboxylase. Plant Physiol. 85, 152-154 https://doi.org/10.1104/pp.85.1.152
  34. Trewavas, A. J. 1983. Nitrate as a plant hormone, In Jackson, M. B. (ed.), British Plant Growth Regulator Group Monograph Vol. 9, Oxford, British
  35. Vogeli-Lange, R. and G. J. Wagner. 1990. Subcellular localization of cadmium and cadmium-binding peptides in tobacco leaves. Plant Physiol. 92, 1086-1093 https://doi.org/10.1104/pp.92.4.1086
  36. Wang, Z. Y., G. W. Snyder, B. D. Esau, A. R. Portis Jr. and W. L. Ogren. 1992. Species-dependent variation in the interaction of substrate-bound ribulose-1,5- bisphosphate carboxylase/oxygenase and rubisco activase. Plant Physiol. 100, 1858-1862 https://doi.org/10.1104/pp.100.4.1858
  37. Woolhouse, H. W. 1983. Toxicity and tolerance of plants to heavy metals. Encycl. Plant Physiol. 12, 246-300
  38. Yamashita T. 1986. Changes in ribulose 1,5-bisphosphate carboxylase concentration due to external nitrogen supply. Annals Botany 58, 277-280 https://doi.org/10.1093/oxfordjournals.aob.a087206
  39. Zhang, N. and A. R. Portis Jr. 1999. Mechanism of light regulation of rubisco: A specific role for the larger rubisco activase isoform involving reductive activation by thioredoxin-f. Proc. Natl. Acad. Sci. USA 96, 9438-9443 https://doi.org/10.1073/pnas.96.16.9438