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ABSTRACT

I propose new combined randomized methods for global optimization problems. These methods are
based on the Nested Partitions (NP) method, a useful method for simulation optimization which
guarantees global optimal solution but has several shortcomings. To overcome these shortcomings 1
hired various statistical selection methods and combined with NP method. I first explain the NP
method and statistical selection method. And after that I present a detail description of proposed
new combined methods and show the results of an application. As well as, I show how these com-
bined methods can be considered in case of computing budget limit problem.

Keywords: Simulation Optimization, Nested Partitions Method, Statistical Selection Method
1. Introduction

Complex and large systems cannot be solved by simple analytical or mathematical
methods. For this reason, using simulation is often necessary. Simulation optimiza-
tion is optimization method with uncertainty. It has been found to be useful in areas
such as designing manufacturing systems, evaluating the requirements of computer
systems, determining policies in inventory systems, designing and operating trans-
portation facilities, evaluating designs for service organization and analyzing finan-
cial systems. These days, it has become one of the most widely used tools in opera-
tions research and management science, especially when large but finite feasible re-
gion is given.

Evaluating the performance of every feasible point using simulation optimiza-
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tion is very time consuming. Even though many simulation optimization algorithms
have been developed, there are some difficulties when applying these algorithms to
real world problems. One of the reasons is that there is no guarantee for convergence
to the optimal; therefore, new algorithms are needed to overcome this problem. There
are many methods for simulation optimization. Deciding which method to use de-
pends on the problem structure. For example, gradient estimation, stochastic ap-
proximation, and sample path optimization are applicable when the feasible input
variables are continuous. On the other hand, the random search method and statisti-
cal method are applicable for discrete input variables. In a recent paper, Shi and
Olafsson [22] introduced an optimization method, the nested partitions (NP) method,
for global optimization when the objective function is deterministic or stochastic. In
this context, the method has been found to be quite efficient for combinatorial opti-
mization. Also, they show NP method is guaranteed convergence to an optimal solu-
tion [22].

Every algorithm that is discussed in this paper is based on the Nested Partitions
(NP) method. Even if the Pure NP guarantees the optimal solution, it has two appar-
ent shortcomings as observed in Shi and Olafsson [22]. First, there are clearly two
sources of error in the estimate of each region: the sampling error due to the use of a
sample of the points in the region, and the estimation error due to the use of simula-
tion. Secondly, in each iteration, there is no guarantee concerning whether the correct
move is made. In Olafsson [19], a two-stage NP is already proposed to address both
of these concerns. By using statistical selection methods to determine a second-stage
sample size, it is possible to assure that the correct move is made with a given prob-
ability while simultaneously controlling the total error, possibly by using different
numbers of sample points in each region.

In this paper I advance two-stage NP method by hiring subset selection which
filters inferior feasible region and several other statistical selection methods which
improve computational effort. Also I suggest appropriate parameter level to control
the computing budget limit.

The remainder of this paper is organized as follows. In Section 2, I define the
problem and present NP Framework which is the basis of the paper. In Section 3,
state of the art of statistical selection method is presented. In Section 4, I show how to
combine NP method with statistical selection method. Experimental results from

simulation are reported in Section 5, and Section 6 contains some concluding remarks.
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2. NP Algorithm

In this section I present the nested partitions (NP) method for global optimization.
This method is primarily motivated by solving problems that have a finite feasible
region.

In mathematical notation, I want to solve the problem
min J(©),
min /(0)

where © is a finite feasible region, and J:© — R is a performance function to be
optimized. In other words, for any feasible point fe ©, J(®) can not be evaluated
analytically. Often J(6) is an expectation of some random estimate of the perform-
ance of a complex stochastic system given a parameter @, that is, J(6)=E[L(8)].
Here L(6) is a random variable which depends on the parameter < ©. I assume
that L(6) is a discrete event simulation estimate of the true performance, and refer

to it as the sample performance.

This problem can be solved by enumerating and comparing all the points to find
the one with the best performance. But, the huge feasible region makes this kind of
approach infeasible. Most of real problems have no structure that can be exploited to
find the optimal solution without checking all the alternatives. A class of NP-
complete problems falls within this framework.

The basic idea of the method is to systematically partition the feasible region into
subsets and focus the computational effort in those subsets that are considered prom-
ising. The Nested Partitions (NP) method is mainly composed of 4 procedures: parti-
tioning, sampling, estimating promising index, and backtracking. In each iteration of
the algorithm, it is assumed there is a region, i.e., a subset of ©, that is considered
the most promising region. Then this most promising region is partitioned into M re-
gions and the entire surrounding region is aggregated into one region. Therefore M+1
disjoint subsets of the feasible region © are looked for at each iteration. Each of
these M+1 regions is sampled using some random sampling scheme, and for each re-
gion a promising index is calculated. These promising indices are then compared to
determine which region is the most promising index in the next iteration. If one of the

sub-regions is found to be best, this sub-region becomes the most promising region.
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However, if the surrounding region is found to be the best, the algorithm backtracks
and a larger region containing the current most promising region becomes the new
most promising region. The new most promising region is then partitioned and sam-
pled in a similar fashion. This process is repeated until the terminate criteria is satis-
fied. Generally, simulation is done when the maximum depth is reached. The single-
ton regions are called regions of maximum depth. Since the singleton regions cannot
be partitioned further, they are considered regions of maximum depth.

NP method can be understood as an optimization framework that combines
adaptive global sampling with local heuristic search. It uses a flexible partitioning
method to divide the design space into regions that can be analyzed individually and
then aggregates the results from each region to determine how to continue the search,
that is, to concentrate the computational effort. Thus, the NP method adaptively
samples from the entire design space and concentrates the sampling effort by system-
atic partitioning of the design space.

The key features in determining how to implement the method is developing a
partitioning method, deciding how much sample effort to use in each region, and
how much local search effort to use in each iteration. These factors are of course inter-
connected. A high quality partition will lessen the need for sampling and local search,
and in general increased effort along one of these dimensions decreases the need for
the other two. Implementing the NP method can therefore be quite problem depend-
ent, in particular, partitioning schemes that have been devised in the past have drawn
heavily on specific structure related to the application itself. This, however, requires
substantial effort on part of the practitioner using the method, and in this paper I pre-
sent a new framework for automating these decisions, namely an intelligent partition-
ing method, guided random sampling, and guided local search.

In each iteration of the NP method it maintains what is called the most promis-
ing region, that is, a sub-region which is considered the most likely to contain the best
solution. This most promising region is partitioned into a given number of sub-
regions, these sub-regions and the surrounding region is sampled using random
sampling, and the sampling information is used to determine which region should be
the most promising region in the next iteration.

As opposed to purely heuristic optimization methods, the NP method guaran-
tees that the optimum solution is eventually found [18]. To make clear understanding,

I take an example from Shi and Olafsson [22].



SIMULATION OPTIMIZATION WITH STATISTICAL SELECTION METHOD 5

Example 1. Consider a feasible region that consists of eight points 7, =©=11,2, 3,4,
5,6,7,8} and that in each iteration we partition the current most promising region
into M =2 disjoint sets. In the first iteration, the current most promising region 7,
is partitioned into two sub-regions, 7, ={1,2,3,4} and 7, ={5,6,7,8}. In our ter-
minology, 77, is then super-region of 7, and 7,. Both 7, and 7, are sampled

and the promising index of each region is estimated. Assume that the estimated

promising index of 7, is better than for 77,. We then select 7, as the most promis-
ing region in the second iteration and further it into two sub-regions 77; ={1,2} and
Ny ={3,4} . In the second iteration, 7; and 7,, and their surrounding region, 7,,
are sampled. If the estimated promising index of 77; is the best, we then select 7,
to be the most promising region in the third iteration and partition 7, further into
another two sub-regions 75 ={1} and 7 ={2}. Hence in the third iteration, 75, and
ns, and their surrounding region, 7, \(775 U 735), are sampled and their promising

index of the surrounding region is the best, we backtrack to a larger region containing
75 . In this case that would be either 7, or 7.

Figure 1. Example of partition generated by the NP method

I define major notations used in this paper and summarized below.

z = {oc ©lo isavalid region given a fixed partitioning }
IycX = {0 c O lo is of maximum depth }

o(k) = The most promising region in the k" iteration

O'j(k) = Subregions,j=1,2,---, M

O (k) = Surrounding region

s(o)e X = Thesuperregion of c € X



3. Statistical Selection Method

Discrete-event stochastic simulation is often used to choose the best system among a
set of proposed systems where the best is defined by the maximum or minimum ex-
pected simulation output. Thus, considerable interests exist for Ranking and Selection
(R&S) procedures. The fundamentals of R&S were first proposed by Bechhofer [1].
The original indifference zone R&S procedure proposed by Bechhofer [1] is single-
stage and assumes unknown means and known, common variances for all systems.
But indifference zone R&S procedures need not be single-stage. By defining the user-
specified number of observations, they can extend to multi-stage procedures (sequen-
tial procedures) assuming common, known variances. Paulson [20] and Bechhofer et
al. [2] present such methodologies. Koeing and Law [17] extend the indifference zone
approach for use as a screening procedure. Unlike the articles discussed, Dudewicz
and Teneja [9] present a multivariate procedure which does not require reduction to a
univariate model. If the indifference zone procedures use a least-favorable configura-
tion (LFC) to allocate additional replications, the optimal computing budget alloca-
tion (OCBA) [4] and Bayesian decision-theoretic methods [3, 13, 6, 7] use an average
case analysis to allocate additional replications [15]. All three procedures assume that
simulation output is independent and normally distributed having unknown mean
and variance and applicable to both two-stage and sequential procedures. Inoue et al.
[15] show empirically that the two-stage procedure of Rinott [21] performs competi-
tively with sequential OCBA and Bayesian decision-theoretic methods when the

number of systems under consideration is small (k <5). For a large number of sys-
tems (k 25), or when the difference in the mean output of the best system and other

systems varies significantly, the Rinott procedure is less effective at identifying the
best system. Among two-stage procedures, the Bayesian decision-theoretic proce-
dures have the best overall performance characteristics.

Recently, many articles have tried to unify the fields of R&S and Multiple Com-
parison Procedures (MCPs). Multiple Comparisons with the Best (MCB) is one of the
most widely used MCPs. To apply MCB in a discrete-event simulation, the simulation
runs must be independently seeded and the simulation output must be normally dis-
tributed, or averaged so that the estimators used are somewhat normally distributed.

There are four R&S-MCB procedures having normally distributed data, but do not
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Table 1. Summary of Statistical Methods (X;; : The output of the jth replication of system i)

Procedure CY
Nelson and Matejcik [18]

Two
(MCB, Indifference zone)

Method CRN | Single/Two/Sequential Stage Major Assumption
idid
Procedure Ps Single X; ~ N(u,0°)
Bechhofer [1] (Indifference zone) o*: common, known
iid
X, ~ N(y,o?

] P}z:}t:lsfon [1911 ) Sequential i (1,0%)
echhofer et al. [2] ¢?: common, known
Procedure Pop fid R

Dudewicz and Dalal [10] Two Xy~ N, 07)
Procedure Poo Single iid )

Dudewicz and Zaino [11] (MCP) Xy~ Nig,o)
. Two iid )

Rinott [21] (Indifference zone) Xy~ N(w,o)
Procedure R Two iid )

Nelson and Matejcik [18] (MCB, Indifference zone) X; ~ Nw,o7)
Procedure DD Two iid 5

Nelson and Matejcik [18] (MCB, Indifference zone) X~ N(u,07)
X, ~ N(u,2)

M : unknown matrix

2 : unknown variance-covariance matrix

Procedure NM
Nelson and Matejcik [18]

Two
(MCB, Indifference zone)

X;~ N(u,x%)
M : unknown matrix

Y. : unknown variance-covariance matrix

Two/Sequential N
Prg;:leciurte ?[C:];A (Optimal computing budget X, ! N(u,0%)
enerak allocation (OCBA))
Two/Sequential
Procedure 0-1(B) . A . iid )
Chick and Inoue [6] (Bayesian decision-theoretic X; ~ N(u,0%)
methods)

require known or equal variance: Rinott’s Procedure (Procedure R), Dudewicz and
Dalal’s Procedure {Procedure DD), Clark and Yang's Procedure (Procedure CY), Nel-
son and Matejcik’s Procedure (Procedure NM) [18]. Procedure R and Procedure DD
are performed in the same manner with the only difference being in the calculation of
the sample means. Both algorithms require independence among all observations.
The total sample size depends on the sample variance of the systems. So the larger
the sample variance, the more replications are required. Unlike these algorithms, Pro-
cedure CY and Procedure NM requires fewer total observations by employing the
CRN. Clark and Yang [8] use the Bonferroni inequality to account for the dependence
induced by CRN. However, Nelson and Matejcik [18] observed that the benefit
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gained from using Procedure CY is diminished when the number of systems to be
compared is large. To overcome this problem, they present Procedure NM. Procedure
NM assumes that the unknown variance—covariance matrix exhibits a structure
known as sphericity that implies the variances of all paired differences across systems
are equal, even though the marginal variances and covariances may be unequal. The
difference between Procedure CY and NM is the calculation of sample variance. This
sample variance affects the total number of sample size for second-stage sampling.
Nelson and Matejcik [18] reported that Procedure NM is superior to Procedure R, DD
and CY in terms of the total observations required to obtain the desired confidence
level. The only potential drawback with Procedure NM is that the assumption of

sphericity may not be satisfied. Table 1 summarizes these characteristics.

4. Statistical Selection with NP

One key idea of many statistical ranking and selection methods is that the number of
sample points obtained for each system should be proportional to the variance of the
performance of each system. When incorporated into the NP method, this intuitively
suggests that since the sizes of the regions vary greatly, and, in particular, the sur-
rounding region tends to be much larger than the sub-regions, some regions can be
expected to have higher variance and will therefore need a larger sampling size.

To state the two-stage NP approach rigorously, let D;;(k) be the ith set of ran-
dom sample points selected from the region o (k) in the kt iteration, where
iz1,j=1,2,---,M+1. Let N=I Di]-(k)l denote the initial number of sample points,
which is assumed to be constant. In addition let #& D;;(k) denote a point in this set

and let [(#) be a simulation estimate of the performance of this point. Then in the kt

iteration, for every i,

X;() = min. 1(6) ®

is an estimate of the performance of the region o ;(k), which is referred to as the it

system performance for the jth system, i>1, j=1,2,---, M+1. The two-stage ranking
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and selection procedure first obtains n, such system estimates, and then uses that

information to determine the total number of N, of system estimates needed from
the jt system, which is, subregion o;(k). This number is selected to be sufficiently

large so that the correct subregion is selected with probability at least P*, subject to
an indifference zone of £>0.

Three different methods are used to identify the best systems in terms of sample
characteristics. Two of these methods have an assumption of independence of be-
tween systems. Generally, independence requires many sampled points. As a result,
Nelson and Matejcik [18] suggest using Common Random Numbers (CRNs) for a

small number of alternatives.

4.1 Two-Stage Sampling with Subset Selection

When using statistical selection methods, computation can be made more efficient by
filtering inferior systems. A subset selection technique is used for filtering systems.
The subset selection technique has been studied by many researchers. In 1965, Gupta
proposed a single-stage procedure with the assumption that alternatives are inde-
pendent equal-sized and normally distributed with the common unknown variance.
This procedure produces random size subsets having an optimal system with pre-
specified probability P*[21] without an indifference zone. In 1989, Sullivan and Wil-
son [23] proposed a general restricted subset selection procedure that allows un-
known and unequal variance with an indifference zone having an exact size to be
included in a subset. Unlike Gupta’s method, the number of systems in the subset can
be controlled. In 1993, Gupta and Santer extended the above methods for pre-
specifying the maximum size of a subset and showed relationship between indiffer-
ence zone approaches. It is efficient if the size of a subset is clearly upper-bounding
than having the exact size of the subset method. Because exact size of subset method
was used, then some inferior system which is already known could be included. The
shortcoming of the subset selection approach is that the best system cannot be found.
As an illustration of the two-stage NP approach, Olafsson [19] uses the classic Rinott’s
ranking and selection procedure. An indifference zone £ is assumed to be given
that describes our tolerance for selecting a system that has up to & units worse per-

formance than the optimal performance. By using &, the number of systems being

compared, and the desired probability P* of correct selection, a constant 4 is calcu-
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lated. Then n, initial samples are obtained from each system. After calculating
sample variance Sf for each system, the second stage sample size for each system is

calculated according the following formula.
128% (k)
N;(k) = max{ng +1, g (2)

After finishing second stage sampling, a system with performance within & of the

optimal performance is selected with probability P*[21].

Another incorporation method with NP is Procedure Ppp. Procedure Ppp is
originally proposed by Dudewicz and Dalal [10]. This method assumes normality
and independence of observations. Procedure Ppp is almost the same as Rinott’s
Procedure but the difference is the selection of the best system is based on weighted
averages. They use the weighted average of each stage to find the best system.

Weights are calculated according the following formula.

Wi(k)=—2—| 1+ {1_Ni(k)(1_(N]’(k)—no)€2

1/2
N;(k) 1252 (k) D » Wip(h)=1-W; (k) (3)

L)

The shortcomings of the Rinott procedure are well documented. Most notably,
the derivations of equation (2) assumes the least favorable configuration among the
system, which typically leads to a very conservative value for the number of sample
points which tends to require too much sampling effort. Also, equation (2) only uses
the variance, such that there is no consideration for the mean performance in the first
stage. Thus, it may be beneficial in terms of computation time to filter out such infe-
rior systems, which can be accomplished by combining it with a subset selection pro-

cedure, resulting in the following algorithm:

Algorithm  NP/Subset/Rinott
Step 1. Initialization
Set k=0 and o(k)=0.
Specify the overall desired probability P* of correct selection and indiffer-

ence zone ¢, the common initial sample size 1, =22, the number of sub-



Step 2.

Step 3.

Step 4.

Step 5.
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regions M. Determine ¢ from the ¢-distributionand & for Rinott’s integral.

t and h are constants which are determined by n,, the minimum prob-

ability P” of correct selection, and M (See the tables in Bechhofer et al. [2]).

t=t 1
1—(1—%)743,%—1.

Partitioning

Given the current most promising region of(k), partition o(k) into M

sub-regions oy(k),---, oy (k), and aggregate the surrounding region ©\ o(k)

into one region oy, (k).

First-Stage Sampling

Step3-1. Let i=1.

Step 3-2. Use uniform sampling to obtain a set Dj(k) of N sampling
points from region j=1,2,---, M+1.

Step 3-3. Use discrete event simulation of the system to obtain a sample
performance L(d) for every #e D;(k) and estimate the per-
formance of the region as

X;(0)= min 1(0)

Step 3-4. If i=n, continue to Step 4. Otherwise, let i=i+1i=i+1 and

go back to Step 3-2.
Estimating Mean and Variance of First-Stage Sampling

Calculate first-stage sample means and variances

30,0 - X o

=) 13 2 _id ,
X k = Xk/ S':l ,fO :1/2/“'IM+1'
0= -2 X0, S T rj
Filtering
Calculate the quantity
/2
S2(k)+52(k) '
Wi]-(k)zt[M] forall i#j.
]

Include the i* region in the selected subset I if Xi(k)< X;(k)+(W;

(k)—¢g)* forall i=j.
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Step 6.

Step 7.

Step 8.

Step 9.

Step 10.

KIM

Computing Total Sample Size
If I contains only a single region, I={o,(k)}, then this has the best prom-
i

ising index so update o(k+1)=0.(k) and go to Step 11. Otherwise, com-
j

pute the total sample size for all je I

202
N;(k)= max{no +1,V i"z(k)”

where ¢ is the indifference zone and his a constant determined by

and the minimum probability P* of correct selection.
Second-Stage Sampling

Obtain N;(k)—n, more simulation estimates of the system performance

forall jeI asin Step 3-1 through Step 3-4 above.
Estimating Mean of Second-5Stage Sampling

Let the overall sample mean be the promising index forall jelI,

PIRARD- #1(3

109 =X ==
]

Determining the Most Promising Index

Select the index of the region with the best promising index,

A A

jx € arg minl(o;(k)) forall jel.
If more than one region is equally promising, the tie can be broken arbitrar-
ily. If this index corresponds to a region that is a sub-region, o(k), then let
this be the most promising region in the next iterations. Otherwise, if the
index corresponds to the surrounding region, backtrack to a larger region
containing the current most promising region. That is, let

o(k+1)= O'Qk(k), if ik<M+1

s(o(k)), otherwise

Checking Stopping Rule
If o(k+1)eX,, stopelse k=k+1 and go back to Step 2.
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Algorithm  NP/Subset/DD

Step 1.

Step 2.

Step 3.

Step 4.

Step 5.

Step 6.

Step 7.

Step 8.

Step 9.

Step 10.

Step 11.

Initialization

See Step 1 in Algorithm NP/Subset/Rinott.
Partitioning

See Step 2 in Algorithm NP/Subset/Rinott
First-Stage Sampling

See Step 3 in Algorithm NP/Subset/Rinott
Estimating Mean and Variance of First-Stage Sampling
See Step 4 in Algorithm NP/Subset/Rinott

Filtering Subset

See Step 5 in Algorithm NP/Subset/Rinott
Computing Total Sample Size for Second-Stage Sampling
See Step 6 in Algorithm NP/Subset/Rinott
Second-Stage Sampling

See Step 7 in Algorithm NP/Subset/Rinott
Estimating Mean of Second-Stage Sampling

13

Calculate the second-stage sample means based on N;(k)-n, replications

N

=(2) 1 i

X)) = —— 3 X.(k).
! N;(ky-ny i=§+l !

Calculating Weights for each Stage Samples

Wk =— 2| 1+ (1 Nf(k)[1 (N -np)e*

N;(k) 1o 1S} (k)

Calculating Weighted Averages

Calculate weighted averages for all je I

= (1 (2
X (k)= Wi X, (k) + Wi, X (k).

and let these weighted averages be the promising index forall jelI,

1(o,(k) = X;(k)

Determining the Most Promising Index
See Step 9 in Algorithm NP/Subset/Rinott

1/2
D , Walk)=1-Wy(K).
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Step 12 Checking Stopping Rule
See Step 10 in Algorithm NP/Subset/Rinott

4.2 Two-Stage Sampling with Nelson-Matejcik

One assumption in the statistical selection procedure used by the NP/Subset/Rinott
Algorithm is that each system is independent, which implies the simulation samples
for comparing the regions must also be independent. However, when comparing
simulated systems, researchers prefer to use common random numbers (CRNs), thus
making the systems independent. Hence it is important to consider statistical selec-
tion methods that allow for correlated systems. One such method is proposed by Nel-
son and Matejcik [18] which will now be incorporated into the NP framework. Given
a fixed first-stage sample size n,, first-stage samples are randomly obtained from
each region by using the same stream of random numbers for each region. Using
these samples, sample variance S of the difference of the sample means is deter-

mined, then use this to compute the final sample size given indifference zone &

N=max{n0, { ('iéjz” @)

Note that this requires computing the constant g which depends on the initial sam-
ple size n, and the number of regions M that are compared [18]. Furthermore,

note that unlike Rinott’s two-stage sampling, the sample size for each system is iden-

tical in the second stage.

Algorithm NP/NM

Step 1. Initialization
Set k=0 and o(k)=0.
Specify the constants &, &, and n, Let g=T,f’_’l)’(k_1)(nu_1),O.5, an equicoor-
dinate critical point of the equicorrelated multivariate central ¢ -distribution;
the constant can be found in Hochberg and Tamhane [14], Appendix 3, Ta-
ble 4; Bechhofer et al. [2]; or by using the FORTRAN program AS251 of
Dunnet [12].

Step 2.  Partitioning



Step 3.

Step 4.

Step 5.

Step 6.

Step 7.

Step 8.
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Given the current most promising region o(k) partition o(k) into M sub-

regions

o(k), -, oy (k), and aggregate the surrounding region ©\o(k) into one

region Oyp,q(k)

First-Stage Sampling

Step 3-1. Let i=1.

Step 3-2.  Use uniform sampling to obtain a set D;(k) of N sampling
points from region j=1,2,---, M+1 using CRN across regions.

Step 3-3. Use discrete event simulation of the system to obtain a sample

performance L(d) for every fe Dj(k) and estimate the per-

f i X (k)= mi .
ormance of the regionas X;(k) eél’ll)lﬁlzlk ) L(6)

Step 3-4. If i=mn;, continue to Step 4.
Otherwise, let i=i+1 and go back to Step 3-1.
Estimating the Variance of First-Stage Sampling
Compute the approximate sample variance of the difference of the sample

means

23, 2 (X (k)= X, (k)= X (k) + X..(k)

S2(k) =
® (k—=1)(my —1)

Where Xi(k)=Y X;(k)/k, X;j()=37 X;(k)/ny and

X (k)= X Xy X (k) kg
Computing Total Sample Size

Compute the total sample size

2
N(k) = max{no, Kgs(k)) ”
£
Second-Stage Sampling

See Step 7 in Algorithm NP/Subset/Rinott
Estimating Mean of Second-Stage Sampling
See Step 8 in Algorithm NP/Subset/Rinott
Determining the Most Promising Index

See Step 9 in Algorithm NP/Subset/Rinott
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Step9.  Checking Stopping Rule
See Step 10 in Algorithm NP/Subset/Rinott

5. Numerical Results

To numerically evaluate the performance of suggested algorithms two different kinds
of problems are considered.

The first problem is production system with a given number of M workstations
configured in parallel and jobs that are to be processed by exactly one of the stations.
The objective is to find the optimal resource allocation that minimizes the expected
makespan having assumption that there are some R resources that can be assigned to
perform the necessary work within each station, and those resources can be moved to
other workstations upon completion of a job. This is a Monte Carlo simulation where
the randomness derives from random processing times, subsequently referred in this
paper as the Monte Carlo problem. The following parameters are used in all experi-

ments. Let M =2,R=5, and the first stage sample points in each region set to
ny =20. Twenty replications are used for each experiment which were performed
with P’ €[0.55,0.95].

Second problem is queuing problem. In this problem, each server represents a
user and each buffer slot represents a resource that is to be allocated to a user. Jobs
arrive at this system at a rate of A. Each user is processing jobs at a rate
u;,i=1,2,---,N, and if a job is routed to a user with a full queue, the job is lost. Let
L;(n;) be the probability of the it server losing a job (n; is the number of buffers
allocated to the ith server). The goal is to allocate all K available buffer slots to the

users in order to minimize job loss. Let 4=10,£=10,N=6,K=18 and n, =10.

Twenty replications are used for each experiment with P" €[0.55,0.95].

5.1 Numerical Evaluation of Two-Stage Sampling with Subset Selection

One of the primary benefits of two-stage sampling is that more computational effort
is allocated in regions where it is needed. To insure that the two-stage approach in-

deed makes a substantial difference, the total number of sample points is used at each
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depth level. To show the results Monte Carlo problem which is mentioned above is
used. Results are shown in Figure 2. These figures show that the computational effort
decreases as the depth increases, although there is a peak at depth two because this is
the first depth where a surrounding region is considered. Intuitively the reason for
this may be that, as the depth increases, the sub-regions become more and more ho-
mogeneous leading to lower variance, and hence less effort is required to evaluate
each region. The opposite is true for the surrounding region, but for Algorithms
NP/Subset/Rinott and NP/Subset/DD, it may often be possible to filter this region out
early, especially when substantial progress has been made and the quality of the sub-

region is high.
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Figure 2. Total Number of Sample Points of Each Depth for NP/Rinott (Left) and
NP/Subset/Rinott (Right)

The potential benefit of two-stage methods without subset selection is illustrated
in both figures. When the pure NP method is used, the number of sample points is
constant. The left plot of Figure 2 shows that over 3,000 sample points are needed to
guarantee 95% success probability at depth two. Contrast with this, what is needed
using the two-stage sampling at depth six is only 2,000 samples. Thus, variable sam-
pling reduces total computational effort by one-third. In addition, the subset selection
creates an even greater savings, and for many settings of P" the effort that would be
required for NP without two-stage sampling is three times that of which would be
required for the NP/Subset/Rinott Algorithm.
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Figure 3. Computation effort in the Surrounding Region for NP/subset/Rinott and NP/Rinott

A comparison between two graphs in Figure 2 shows that the NP/Subset/Rinott Algo-
rithm requires fewer sample points in every depth. In particular, if the P is low, the
total number of sample points for the NP/Subset/Rinott Algorithm is less than half of
that used by the NP/Rinott Algorithm; however, the relative difference between these
algorithms is decreased by increasing P’ . I get the similar results from the NP/Sub-
set/DD Algorithm. In conclusion, at least for this problem the NP/Subset/Rinott Algo-
rithm is less computationally expensive than the NP/Rinott Algorithm and these
benefits are higher when P" is set to a low value.

The main benefit of subset selection is the improvement of the computational ef-
ficiency by eliminating inferior systems in the first stage. This to be particularly effec-
tive as the depth increases such that the surrounding region becomes larger, thus
usually increasing the variance, which in turn dictates more computational effort.
However, if the search is identifies a very good region, a thorough search of the sur-
rounding region may become wasted effort and it would be beneficial to filter this
region out early. Figure 3 shows the results for P'=0.90. As the depth increases, the
NP/Subset/Rinott Algorithm filters out the surrounding region more and more fre-
quently, resulting in lower average effort in the region. On the other hand, the
NP/Rinott Algorithm uses more effort in the surrounding region, which is reasonable
due to its high variance. Thus, the NP/Subset/Rinott Algorithm can realize substantial
benefits over NP/Subset. I also similar results from NP/Subset/DD.
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5.2 Numerical Evaluation of Two-Stage Sampling with Nelson-Matejcik

Since common random numbers are used in the NP/NM Algorithm, less sampling
should be required. However, this algorithm will use the same amount of computa-
tional effort in each region; whereas, our numerical results from Section 5.1 indicate
that substantial benefits could be obtained by using a variable sampling effort. Thus,
since there are competing benefits to the two approaches, it is not clear which algo-
rithm will perform better, the NP/NM Algorithm, the NP/Subset/DD Algorithm, or
the NP/Subset/Rinott Algorithm; therefore it is necessary to evaluate this numerically.

For numerical evaluation, Monte Carlo problem and queuing problem which are

mentioned in Section 5 are considered.

Table 2. Increase of Sample Points for Different P and Algorithms

P Monte Carlo Problem Queuing Problem
W P'=055 P'=095 P'=0.55 P'=0.95
NP/NM 14000 29785 6783 153865
NP/Subset/Rinott 59585 249261 27623 201568
NP/Subset/DD 76638 302855 27360 200858
3.3 17
,—70— NP/Subset/Rinott —{ll— NP/Subset/DD  ——f—— NP/NM l — inott —fl— DD —&— NP/Nhﬂ

Average of Makespan

Figure 4. Average Performance of Final Solution for the Monte Carlo Problem (Left) and the

Queuing problem (Right)

The performance of the three algorithms is compared along two dimensions:
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speed as measured by the total number of simulation runs, and quality as measured
by the average performance of the final solution obtained. Table 2 shows the total
number of sample points of three algorithms for both problems. For both problems,
notice that the NP/NM Algorithm requires substantially fewer sample points than the
NP/Subset/Rinott and NP/Subset/DD. With respect to solution quality, Figure 4
shows the performance results for both problems. For the Monte Carlo problem, the
NP/NM Algorithm performs better; however, in the queuing problem, the NP/Subset/
Rinott and NP/Subset/DD Algorithms show better performance. Moreover, there was
little difference between NP/Subset/Rinott and NP/Subset/DD Algorithms. Thus,
which algorithm performs better depends on the problem structure, but these results
also indicate that the NP/NM Algorithm is faster and thus better if the simulation
budget is very limited.

5.3 Best Probability of Correct Selection having computing budget limit

One of the key parameters that must be carefully chosen for the two-stage NP method
is the probability of correct selection (P') in each iteration. If computation time is

not an issue, it can be set using some equation of Olafsson [19] to set it according to
the desired probability of terminating correctly. However, with limited computing
budget it is of interest to empirically determine its best value.

This evaluation does that for both the Monte Carlo problem and queuing prob-
lem. Thus for this section, the algorithm is terminated only after a fixed number of
simulation evaluations have been conducted. For the Monte Carlo problem, the simu-
lation was run for six different sets of simulation estimates: 20,000, 30,000, 40,000,
50,000, 65,000, or unlimited for the NP/NM Algorithm nine different sets of simula-
tion estimates: 75,000, 100,000, 125,000, 150,000, 175,000, 200,000, 225,000, 250,000, or
unlimited for the NP/Subset/Rinott Algorithm, and 10 different sets of simulation es-
timates: 100,000, 125,000, 150,000, 175,000, 200,000, 225,000, 250,000, 275,000, 300,000,
or unlimited for the NP/Subset/DD Algorithm. For the queuing problem, the simula-
tion was run for 6 different sets of simulation estimates: 50,000, 75,000, 100,000,
125,000, 150,000, or unlimited for the NP/NM algorithm, nine different sets of simula-
tion estimates: 75,000, 100,000, 125,000, 150,000, 175,000, 200,000, 225,000, 250,000, or
unlimited for the NP/Subset/Rinott algorithm, and 10 different sets of simulation es-
timates: 100,000, 125,000, 150,000, 175,000, 200,000, 225,000, 250,000, 275,000, 300,000,



SIMULATION OPTIMIZATION WITH STATISTICAL SELECTION METHOD

or unlimited for the NP/Subset/DD Algorithm. Figure 5 shows the result of the
NP/NM Algorithm. For the range of Pe [0.55,0.70] there is no significant differ-

ence of average performance and sample points even if the simulation estimates are
increased. Similar results are obtained for the NP/Subset/Rinott Algorithm and
NP/Subset/DD Algorithm, as illustrated by Figure 6 and Figure 7. Figure 6 shows that

it is possible to improve the performance found by increasing the P* value to the

range of P e[0.7,0.8], but with limited computation budgets the performance de-

generates very quickly for high P* values. Furthermore, relatively low P* values

are recommended because the amount of computational effort increases exponen-

tially with P".
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Figure 5. Performance for the Queuing Problem using NP/NM Algorithm
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Figure 6. Performance for the Monte Carlo problem using NP/Subset/Rinott Algorithm



22 KIM

46 300000
—4— 100000 —— 100000
——- 125000 —— 125000
—&— 150000 250000 —&—- 150000
< 4277 —e—qzs000 [T ) %= 175000
a —%~— 200000 S 200000 §{ —%—200000 f=-------===------ ---
K] —e— 225000 e —&— 225000
= s —+—= 250000
5 3877 T+ 20000 e R I R
2 —a— 275000 3 275000
® —=— 300000 5 —==— 300000
3 —a— INFINITE $ 100000 T~ INFINITE |-=--------
34T e e -
50000 T ====== == gl oo oo
3 0 — —
0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 09 095 1 0.5 0.55 06 065 0.7 075 0.8 0.85 0.9 0.95 1
P* pP*

Figure 7. Performance for the Monte Carlo problem using NP/Subset/DD Algorithm

6. Conclusion

I have proposed new methodologies for simulation-based optimization that builds on
the previously proposed nested partitions method of Shi and Olafsson [22]. These
new combined methods, namely Rinott’s with subset procedure, DD’s with subset
procedure, and Nelson Matejcik’s procedure take advantage of the statistical selection
procedure to guarantee that the search makes progress in every iteration with mini-
mum probability.

In conclusion, the NP/Subset/Rinott Algorithm is less computationally expensive
than the NP/Rinott Algorithm and these benefits are higher when P’ is set to a low
value. And this result is also supported by watching surrounding region. I get the
same results between NP/Subset/DD and NP/DD. When restricting computation time,
that is budgeting computation time, the performance degenerates very quickly for
high P’ values. Also, relatively low P* values are advisable because the amount of
computational effort increases exponentially with respect to P’. Also I get empirical
results that which algorithm is the best depends on the problem to solve. The NP/NM
Algorithm is good for Monte Carlo problems. For the queuing problem, the
NP/Subset/Rinott Algorithm and the NP/Subset/DD Algorithm give better results.
And in both problems, the NP/Subset/Rinott Algorithm and the NP/Subset/DD Algo-
rithm have little difference in the results. As expected the NP/NM Algorithm needs

relatively less computational effort which is good for optimization with budget limits.
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