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ABSTRACT

We consider a (worst-case) robust optimization version of the Economic Order Quantity (EOQ)
model. Order setup costs and inventory carrying costs are assumed to have uncertainty in their val-
ues, and the uncertainty description of the two parameters is supposed to be given by an ellipsoidal
representation. A genetic algorithm combined with Monte Carlo simulation is proposed to approxi-
mate the ellipsoidal representation. The objective function of the model under ellipsoidal uncertainty
description is derived, and the resulting problem is solved by another genetic algorithm. Computa-
tional test results are presented to show the performance of the proposed method.

Keywords: EOQ Model, Uncertainty, Robust Optimization, Genetic Algorithm, Monte Carlo Simulation
1. Introduction

The Economic Order Quantity (EOQ) model is a basic inventory management model
introduced in 1951 to decide on an optimal order quantity or lot size, provided that
the three parameters of average demand rate, order setup cost, and inventory carry-
ing cost are given. The model has been widely utilized due to its simplicity as well as
adaptability to various situations.

In the traditional deterministic EOQ model, an optimal order quantity Q, is

sought to minimize the average cost rate C; which is the sum of both the total of

inventory carrying costs and the total of order setup costs,

This work was supported by the Post-doctoral Fellowship Program of Korea Research Foun-
dation (KRF).
E-mail: sungmook@korea.ac.kr

sk

35



36 LIM

D
Cy =SdQ_+hd%f (1)
i

where D is the average demand rate, S; is the setup cost per order, and h, is the

inventory carrying cost per item per unit of time, with all the three parameters being

deterministic. The average cost rate is minimized at the order quantity,

. [25,D
Q= n, )

and in this case the minimal cost is

C; =+/25,Dh, . ©)

It is assumed the values of the parameters are known exactly in the model. In

real management environment, however, it is more natural to consider situations
where the parameters have some uncertainty in their values. Values for the parame-
ters may have fluctuation out of control under uncertain management environment,
or involve some estimation errors. In this study, we consider the case where the pa-

rameters S and h have uncertainty in their values. The parameter vector (S, h) is

modeled as a random variable vector with a known probabilistic distribution, and the

statistical properties of each parameter are given as

E(S)=us, E(h)=pm,,
V(S)=02, V(hy=07,
Cov(S, h) =05,

where E, V, and Cov stand for expectation, variance, and covariance of given
random variables, respectively.

For situations involving estimation errors, many studies have been done about
the sensitivity analysis of average cost rate to errors in parameter estimation. Espe-
cially, Lowe and Schwartz [8] considered the case where the value ranges of parame-
ters are provided, and deployed a minimax criterion to decide on a worst-case opti-
mal order quantity. The minimax criterion under uncertainty of parameter values is
also the basis of (worst-case) robust optimization.

Robust optimization is concerned with optimization problems for which the
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problem data is not specified exactly [2]. Consider an optimization problem of the
form

min  fy(x, u)

st fi(x, w<0, i=1,--,m,

(P)

where xe R" is the decision variable, ue R¥ is the uncertain data(parameter) ele-
ment of the problem, the function f,:R" xR¥ - R is the objective function, and the
functions f; :R"x R¥ 5 R, i=1,---, m, are the constraint functions.

The idea in robust optimization is to explicitly incorporate a model of data uncer-
tainty in the formulation of an optimization problem, and there are mainly two ap-
proaches to robust optimization, stochastic versus worst-case robust optimization,
which differ in the way of dealing with uncertainty of parameter values [3].

In the stochastic robust optimization approach, the uncertain parameter vector is
modeled as a random variable with a known distribution, and we work with the ex-

pected values of the objective and constraint functions as follows:

min  E, (fo(x, u))
st.  E(fi(x, u)<0, i=1,,m,

where E, means expectation with respect to the random variable u.

In the worst-case robust optimization approach proposed by Ben-Tal and Nemi-

rovski [1, 2}, they assume a “decision environment” which is characterized by

(i) A crude knowledge of the data: it may be partly or fully “uncertain,” and all that
is known about the data vector u is that it belongs to a given uncertainty set
Ue R,

(ii) The constraints f;(x, u) <0 must be satisfied, whatever the actual realization of

ue l is.

In view of (i) and (ii) a vector x is called feasible solution to the uncertain opti-

mization problem (P) if x satisfies all possible realizations of the constraints:
filx, w)<0, i=1,---,m, Vue U. 4)

The notion of an optimal solution to the uncertain problem (P) is defined in

the same manner: such a solution must give the best possible guaranteed value
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sup,cy fo(x, u) of the original objective under constraints (4), i.e., it should be an op-

timal solution to the following “certain” optimization problem.

(P*) min {sup folx,u): fi(x,u)<0,i=1,---m, Vue U}.
uel

Ben-Tal and Nemirovski [2] argued that the “decision environment” is well mo-
tivated by several reasons. They also showed that if the uncertain set is represented as
an ellipsoid, then for some of the most important generic convex optimization prob-
lems (linear programming, quadratically constrained programming, semidefinite
programming and others) the corresponding robust optimization problem is a tracta-
ble problem which can be solved by efficient algorithms such as interior point meth-
ods. Notice that an EOQ problem is essentially a geometric programming problem,
and it is not known whether a general robust geometric programming can be refor-
mulated as a tractable optimization problem that interior point or other algorithms
can efficiently solve.

When we are to formulate a problem involving uncertainty via worst-case robust
optimization, it is quite natural to think of how the uncertainty set can be effectively
constructed. There is, however, no essential output from the field of robust optimiza-
tion about practically constructing meaningful uncertainty sets, whereas there is
much literature on solving worst-case robust optimization problems.

In this study, we investigate the EOQ model with uncertainty in parameters us-
ing mainly the framework of worst-case robust optimization proposed by Ben-Tal
and Nemirovski. We also propose a method of describing the uncertainty set. As for
the method, a genetic algorithm combined with Monte-Carlo simulation is developed
and implemented with the MATLAB [9]. Computational test results showing the per-

formance of our approach are provided.

2. Robust Optimization for the EOQ Model

Before we consider the two types of robust optimization formulation for the EOQ
problem in this section, we assume again the setup cost S and the inventory carry-

ing cost h have uncertainty in their values with statistical properties as mentioned
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in the previous section. It is easy to solve the stochastic robust optimization version of
the EOQ model because the objective function of the model (1) is linear in (S, k) . The

optimal order quantity (;, is obtained by replacing S and h by us and ,, re-

Q, = 2B )
Hy,

In order to build the worst-case robust optimization version of the EOQ model,

spectively, in (2) to be

we assume that the uncertainty set of the parameter vector (S, h) is represented by a

set F.Then, the problem is formulated in the sense of the worst-case robust optimi-

zation as

min sup 2+@ (6)
Q@0 smer Q2

We also assume the set F is described as an ellipsoid for the purpose of making
the problem tractable, and we explore in the next section how to describe the uncer-

tainty of the parameter vector (S,#) by an ellipsoidal representation.
If we further restrict the sign of (S, h) to be positive, which is quite natural and
necessary restriction in the EOQ model, we get
min sup S—D+-— , 7)
Q0 gmer Q2
where F' =Fn{(S,h):5>0, h>0}. Although the problem (7) is convex since the
function SD/Q+hQ/2 is convex in for each (S, h), it is difficult to obtain an ana-
lytical form of sup ;. SD/Q+hQ/2 with the uncertainty set F' being in part
polyhedral. It is, however, obvious that the supremum is attained at a point with

(S, h) > 0. Therefore, we can conclude the problem (7) is equivalent to (6), and we are

allowed to deal with the problem (6), not with (7).
Let the set F be given as

(| Hs 5]
F_{(ﬂhJ+P[u2]|”u”S1}, (8)
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R?? is a nonsingular matrix and the norm for u=(u;,u,)" is the Euclid-

where Pe
ian norm. If we, for brevity, set & =(S,h)! and x=(D/Q,Q/2)", then we can re-

write the inner part of (6) as

SUPgeF Ex= sup,{ xT(,ug: + Pu) | || u || <1}
=sup, { xTu5+xTPu i ||u||$l} 9)
=y§x+” PTx

where s = (s, 1,)" -

Using this result, we can rewrite (6) as

min ,ugx+||PTx||—me>0——Q—+ﬂhQ+“PT(D/Q,Q/Z) ”

x>0
10
=min OH—SB+M+( —+ ,BQ +7D); ()
Q> Q Q
where

(Pn Ple

P21 P2

a=P11+P12:

B= P%l + P%zf
Y =PuPat PP,

and hereafter we will refer to the function of Q to be minimized in (10) as C(Q).

When we find the first and second derivatives, (11) and (12), of C(Q),

2
CQ —@+%+%[-4“Ds +,BQJ .1 , (1)
Q Q \/4an)2 +Q* +4yD
X 3
o MsD 1 aD” aD 2
(12)

aD? 1
+ 6= +=
o1

jaD '
4vD
JQ s
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to explore curvature of the function, we don’t get any useful information about

easiness of minimization, that is convexity. For example, if P, s, #, and D are

given by

5 -4
P=| , (| #s=m=1 D=100,

the plots of C(Q), C(Q) and C”(Q) are in Figure 1. Specifically, the two plots of
C’(Q) which differ in the range of Q are presented at the bottom of Figure 1, and it
is found that C”(Q) assumes negative values at some points of Q between 10 and

20. Therefore, C(Q) is not convex in general.
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Figure 1. Plots of C(Q), C(Q) and C’(Q) for the example case

Nonconvex nonlinear optimization problems do not lend themselves to efficient
algorithms, and meta-heuristic methods including genetic algorithms have been gen-
erally applied to such problems to obtain globally optimal solutions [5, 7]. Therefore,

we find it an appropriate methodology to utilize genetic algorithms for solving prob-
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lems like (8). The problem involves only one variable Q and the fitness for a given
chromosome is obviously determined by evaluating C(Q). The detailed design of

our genetic algorithm is described in section 4.

3. Description of Uncertainty Set

In this section, we propose a way of representing the uncertainty set F by an ellip-

soid of possible values for the parameter vector (S, h) assuming that the uncertain

parameter vector follows a known probabilistic distribution. First, we introduce the
notion of the certainty level of an ellipsoidal representation of an uncertainty set and p-

certainty ellipsoidal representations.

Definition 1 Given an ellipsoidal representation F of an uncertain parameter vector v,
its certainty level p is
p=Pr(ve F).

Definition 2 An ellipsoidal representation F of a given uncertain parameter vector is
referred to as a p-certainty ellipsoidal representation of the parameter vector if both the
condition (a) and (b) are satisfied.

(a) The certainty level of F 1is greater than or equal to p.

(b) The volume of F is minimal among ellipsoidal representations satisfying the condition (a).

These definitions express quite a natural and intuitive idea by which one may
build a probabilistically meaningful ellipsoidal representation of the uncertainty set
of the parameter vector when a probabilistic distribution of the parameter vector is
given.

Now, we address a way to find a p-certainty ellipsoidal representation of an
uncertain parameter vector. In many cases, it is analytically intractable to find the ex-
act representation, so we develop a computational method utilizing a combination of
Monte Carlo simulation and genetic algorithm. Monte Carlo simulation is used for
determining whether a given ellipsoidal representation satisfies the condition (a) or

not. A genetic algorithm is designed to find an ellipsoid of which volume is minimal
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among ellipsoids satisfying the condition (a). Details of the method will be covered in

the next subsections, and hereafter we assume the uncertain parameter vector (S, h)

follows jointly normal distribution.

3.1 Calculation of certainty level using Monte Carlo simulation

Given an ellipsoid F, it is needed in the proposed method to calculate the certainty

level py of F,
Pr = [op f(§)dS dn (13)

where, f(£) is the probability density function of jointly normal distribution of the

parameter vector &=(S, mT. It is not easy to calculate (13) exactly so that Monte

Carlo simulation technique is utilized for approximation, instead.

In the proposed method, a number of pairs of two random values which are
jointly normal distributed and represent S and h, are generated, and tested if each
pair is contained in the given ellipsoid F.Then we approximate pp to be the pro-
portion of the pairs which are contained in F.

If we set the number of pairs randomly generated to n and let the proportion of

the pairs which are contained in F be p, then from the theory of interval estimation,

we can conclude that we have (1-a)% confidence that the interval,

. 5(1—p . =P
P‘Za/u,p( . P ¢ pe< P+za/z,/¥,

contains the true pr, where z,,, isthe (1-a/2) percentile of the standard normal

distribution. For example, if we obtain p=0.9 from 3,000 randomly generated pairs,

then we have 99% confidence that the interval from 0.886 to 0.914 contains the true py .

3.2 A genetic algorithm for finding p-certainty ellipsoidal representation

Given the procedure for checking whether a given ellipsoid satisfies (approximately)
the condition (a), it is needed to find as small an ellipsoid as possible in order to come
up with an approximate p-certainty ellipsoidal representation. In other words, we

should find a minimum-volume ellipsoid which satisfies the condition (a), where the
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certainty level of an ellipsoid is calculated in the way described in section 3.1. Since
the problem has extremely hard combinatorial nature and a way of analytical analysis
is not obvious, we find it is appropriate to utilize the framework of genetic algorithms.
We refer the readers to [6] for general theory of genetic algorithms.

In the proposed genetic algorithm, the defining matrix P in the p-certainty el-
lipsoidal representation is to be approximated. At each generation, a new set of ap-
proximations P’s is created by applying genetic operations to the old set. Individu-
als, or current approximations, are encoded as binary strings, called chromosomes.

Without loss of generality we can assume P is symmetric and positive definite.

For a symmetric positive definite matrix Pe R*?,

p1p
P=[ ! 2)/ p>0, p3>0, pps—p5 >0, (14)
P> Ps3

the corresponding chromosome C is represented as
C=[c & ]

where ¢;, ¢, and c; are binary representations for p;, p, and p;, respectively.

As indicated in (14), the positive definiteness of P requires that p; >0, p; >0 and
piPs—ps >0 . The first two of these conditions are incorporated in the chromosome

representation, but the third condition is treated as a feasibility criterion and takes
part in evaluating fitness values.

In genetic algorithms, it is needed to assess the performance, or fitness, of indi-
vidual members of a population, and this is done through an objective function that
characterizes an individual’s performance in the problem domain. Thus, the objective
function establishes the basis for selection of pairs of individuals that will be mated
together during the reproduction [4]. In our genetic algorithm, the objective function
is designed to incorporate both the infeasibility penalty of individuals and the vol-
umes of ellipsoids represented by individuals. The volume of an ellipsoid is propor-
tional to the determinant of the defining matrix. So, the objective function of the algo-

rithm in the sense of minimization is

fx)=M, if pips—p3 <0 or p,<p

(15)
=pips — P2, otherwise,
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where x is a given individual, M is a big positive number, and p, is the certainty
level of the ellipsoid represented by x. Note that the certainty level p, is calculated

approximately by Monte Carlo simulation as described in the previous subsection.
It is usual, for a performance reason, to transform the objective function values

into a measure of relative fitness,
F(x)=g(f(x)), (16)

where ¢ transforms the value of the objective function f to a non-negative num-

ber and F is the resulting relative fitness. There are many ways of constructing F,

and our choice is described in the next section.

4. Implementation with MATLAB

In the implementation of our method, we utilize the general purpose genetic algo-
rithm MATLAB toolbox [4]. The toolbox provides several algorithmic options and
allows users to tune parameters to find the best setting. We use genetic algorithms for
both optimizing the problem (8) and finding an approximate p-certainty ellipsoidal
representation, and adopt the same strategies for genetic operations for both the
problems, except the maximum number of generations.

For population representation, we use Gray coding to overcome the hidden rep-
resentational bias in conventional binary representation as the Hamming distance
between adjacent values is constant.

In selection process, rank-based fitness assignment method is adopted to avoid
the situation where highly fit individuals in early generations can dominate the re-
production causing rapid convergence to possibly sub-optimal solutions. Also, we
use the stochastic universal sampling method provided by the toolbox.

For the recombination process, single-point crossover method with crossover
rate 0.7 is used. We use an elitist strategy where one or more of the fittest individuals
are deterministically allowed to propagate through successive generations. The value
of generation gap, which is the fractional difference between the new and old popula-
tion sizes, is set to 0.9.

The length of binary string for representing one variable is set to 20, and the num-
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ber of individuals per population is set to 200. For the case of optimizing the problem
(8) we set the maximum number of generations equal to 30, and for the case of finding
an approximate p-certainty ellipsoidal representation we set the number to 200.

The Monte Carlo simulation procedure is implemented also with the MATLAB.
The MATLAB function monrnd is used for generating jointly normal random values

of (S, k). 3,000 pairs of values are generated, and the number of pairs which are con-

tained in a given ellipsoid is counted to produce the approximate certainty level of
the given ellipsoid. The confidence interval of the true certainty level and its confi-

dence level are already calculated at the end of subsection 3.1 as an example.

5. Numerical Experiment

We tested our method with various statistical parameter settings. Parameters we
change in the experiment are standard deviations of S and h and correlation coef-
ficient between them, as well as certainty level p. The other parameters are fixed
such that the average demand rate is fixed to 10,000, and means of S and h are
fixed to 1,000 and 10, respectively, because these parameters take no effect on the per-
formance of the method.

We tested with standard deviations being 10%, 20% and 30%, and correlation co-
efficient being -0.8, -0.5, -0.3, 0, 0.3, 0.5, and 0.8. Along with these settings, certainty
level p is set to 0.9 or 0.95. The experimental results are summarized in Table 1.

Among the symbols at the top of the table, p means the correlation coefficient

which is calculated as o5, /(650},), and gain and loss are calculated as

_C@)-CQ) 100

_ Ga@)-CalQa) 100
c@)

Ca(Q2)

gain loss

Note also that Q; is the optimal order quantity in the deterministic model with
order setup cost and inventory carrying cost being fixed to 1,000 and 10, respectively.
The amount gain means how much more Q gets over Q; in terms of the worst-
case robust optimization version objective function C. Similarly, the amount loss
means how much more Q; gets over Q in terms of the deterministic objective
function C;.
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Table 1. Test results on various statistical parameter settings
No. o 0 p P Q' @) (@) 2ain(%) CAQ) loss(%)
1 100 1 0.8 090 1407.623 16818522 16818.709 0.001 14142290  0.001
2 100 1 05 0.90 1395407 16617116 16618.694 0.010 14143.403  0.009
3 100 1 03 090 1397.610 16656540 16657.780  0.007  14143.122  0.007
4 100 1 0.0 090 1384.706 16226517 16230.609 0.025 14145279  0.022
5 200 2 0.8 090 1397610 19689587 19691.004 0.007 14143.122  0.007
6 200 2 05 090 1386.881 19454702 19458698 0.021 14144829 0.019
7 200 2 03 090 1386.080 19134.630 19138.947 0.023 14144.991 0.020
g8 200 2 00 090 1400871 18341492 18342699 0005 14142771  0.004
9 300 3 0.8 090 1397.839 22331854 22333439 0.007 14143.095 0.007
10 300 3 05 090 1393.862 21761341 21763900 0.012 14143.621 0.011
11 300 3 03 090 1429.853 21065.354 21066.879 0.007 14142.991 0.006
12 300 3 0.0 090 1390.085 20358060 20362.001 0.019 14144230  0.015
13 100 1 -0.8 090 1406.507 15080.185 15080.534 0.002 14142.347  0.001
14 100 1 05 090 1413431 15572669 15572.672 0.000  14142.138  0.000
15 100 1 -0.3 090 1408.882 15918.751 15918.885 0.001 14142.236  0.001
16 200 2 08 090 1389.027 16101.140 16106.089  0.031  14144.419 0.016
17 200 2 05 090 1358.328 17141509 17162571 0.123  14153.632  0.081
18 200 2 -0.3 090 1379.185 17765.719 17773.194 0.042 14146.584  0.031
19 300 3 0.8 090 1390371 16871523 16877.874 0.038  14144.180 0.014
20 300 3 05 090 1429510 18379480 18381.409 0.010 14142954  0.006
21 300 3 03 090 1398.096 19561.881 19563.768  0.010  14143.065  0.007
22 100 1 08 095 1418.095 17273.389 17273.455 0.000  14142.189  0.000
23 100 1 05 095 1421957 17120413 17120.681 0.002  14142.346  0.001
24 100 1 03 095 1411142 16848725 16848.769  0.000 14142169  0.000
25 100 1 0.0 095 1391.487 16652.067 16654.523 0.015 14143992  0.013
26 200 2 0.8 095 1415520 20354238 20354248 0.000 14142.142  0.000
27 200 2 05 095 1416.664 20225441 20225474 0.000 14142.157  0.000
28 200 2 03 095 1414175 19432622 19432622 0.000 14142136  0.000
29 200 2 0.0 095 1381.044 18932527 18939.188 0.035 14146119  0.028
30 300 3 0.8 095 1414.289 23559785 23559.785 0.000 14142.136  0.000
31 300 3 05 095 1417494 22628787 22628.857 0.000 14142174  0.000
32 300 3 03 095 1398.869 22271342 22272935 0.007 14142977  0.006
33 300 3 0.0 095 1370.974 21448607 21462.150 0.063 14148954  0.048
34 100 1 -08 095 1407423 15249945 15250222 0.002 14142299  0.001
35 100 1 05 095 1423960 15821.779 15822271  0.003 14142469  0.002
36 100 1 0.3 095 1402359 16195422 16196113 0.004 14142.637  0.004
37 200 2 08 095 1381903 16446531 16455100 0.052 14145913  0.027
38 200 2 05 095 1409.254 17390687 17390.863  0.001 14142223  0.001
39 200 2 03 095 1406.937 18038542 18038.885 0.002 14142324  0.001
40 300 3 0.8 095 1391573 17353583 17359469 (.034 14143.977 0.013
41 300 3 05 095 1418.896 18972505 18972.701  0.001 14142213  0.001
42 300 3 03 095 1401958 19987.779 19988.974 0.006  14142.671  0.004
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As can be seen in the results, the amounts gain and loss are very small. Thus, we

can conclude that C as well as C; is insensitive to the change of order quantity
around the optimal points. On the other hand, we observe the fact that gain is signifi-
cantly larger than loss, which implies the better trade-off performance of Q° over Q;

in the sense of worst-case optimization.

Next, we plot the progress of the two genetic algorithms, the objective function
in (8), and the approximate p-certainty ellipsoidal representation for each problem
instance presented in Table 1. The plots for several selected representative instances
are presented in from Figure 2 to Figure 6 in APPENDIX (Five selected instances in
Table 1 are indicated with grey color). In each figure, the progress plot of the genetic
algorithm finding an approximate p-certainty ellipsoidal representation is on the top
left, and the progress plot of the genetic algorithm solving the problem (8) is on the
top right. Also, the approximate p-certainty ellipsoidal representation found by the
genetic algorithm is drawn, superimposed with 3,000 randomly generated pairs of
(S, h), on the bottom left, and on the bottom right is the objective function C(Q).

From the plots, we observe that the genetic algorithm for solving the problem (8)
converges after about 5 generations in most cases, and that the final solutions are
nearly optimal, which can be confirmed by checking the plots of the objective func-
tions. We also see that the genetic algorithm for finding an approximate p-certainty
ellipsoidal representation takes on average between 100 and 200 generations to con-
verge, and that the approximate p-certainty ellipsoidal representations are properly
shaped reflecting well the certainty level and the corresponding statistical properties
of (S, h).

Regarding computational times, it takes on average one minute to solve one
problem instance. The method is implemented with the MATLAB version 6.5 [9], and
we run the implemented program on a laptop computer with 1.73Ghz Intel Pentium

Mobile processor and 512M main memory.

6. Concluding Remark

We have shown how a worst-case robust EOQ model can be solved by building up a

solution method based on genetic algorithms combined with Monte Carlo simulation.
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We couldn’t obtain a simple analytic solution to the model as in the deterministic case,
because the objective function of the model is not always convex. However, we de-
veloped an efficient computational method for the model, which can be easily util-
ized in the field.

While we implemented the method assuming the uncertain parameter vector is
modeled as a random variable vector which follows jointly normal distribution, any
other probability distribution for the uncertain parameter vector can be assumed with
slight modification to the implementation.

In this research we consider only the case that order setup costs and inventory
carrying costs have uncertainty in their values. As a further research issue, the situa-
tion, where all of parameters including average demand rate have uncertainty in their
values, is worth considering. Because nonlinearity is introduced in that case, more

complication is involved than in the case considered in this paper.
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Figure 2. Plots for the No. 1 case
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Figure 3. Plots for the No. 6 case
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Figure 5. Plots for the No. 36 case



Log10{det(P))

SOLVING ROBUST EOQ MODEL USING GENETIC ALGORITHM 53

5 4,248
48 Best det(P)=30367931 4.2481 Best C(Q)=17353.5832
- 4.247
N 4246 W
44 g 4245
L] g .
4.2 ° S 4244 1
[=2
. S 4243
- 4.242 1
38 { - 4.241
3.6 — 4241 o 4
0000000000000 000000000C0OCOO0
3.4 4239
0 50 100 150 200 250 0 5 10 15 20 25 30 35
generation generation
x104
20
18 25
16
14 2
12 5
10 518
8
1
6
4
0.5
2
[
-500 0 500 1000 1500 2000 2500 0 02 04 06 08 1 12 14 16 18 2
S Q x104

Figure 6. Plots for the No. 40 case



