A Note on Robust Combinatorial Optimization Problem*

Kyungchul Park

Department of Systems Management Engineering, Sungkyunkwan University 300 cheoncheon-dong, Janan-gu, Suwon, Kyunggi-do, 440-746, Korea

Kyungsik Lee**

School of Industrial & Management Engineering, Hankuk University of Foreign Studies San 89, Wangsan-ri, Mohyun-myun, Yongin-si, Kyunggi-do, 449-791 Korea

(Received Apr. 2007; Revised May 2007; Accepted May 2007)

ABSTRACT

In [1], robust combinatorial optimization problem is introduced, where a positive integer Γ is used to control the degree of robustness. The proposed algorithm needs solutions of n+1 nominal problems. In this paper, we show that the number of problems needed reduces to $n+1-\Gamma$.

Keywords: Combinatorial Optimization, Robust Optimization

1. Introduction

In [1], Bertsimas and Sim proposed a robust combinatorial optimization problem where uncertainty on the objective coefficients is considered. For the details of more general robust discrete optimization and its applications, refer to [1, 2, 3]. Formally, the robust combinatorial optimization is defined as follows [1].

Let $X \subseteq \{0,1\}^n$ be a set of feasible solutions for a combinatorial optimization problem whose decision variables are binary. For each $j \in N = \{1, \dots, n\}$, the cost of the item j takes a value in $[c_j, c_j + d_j]$, where $d_j \ge 0$. Then the problem is formulated as follows:

^{*} This work was supported by Hankuk University of Foreign Studies Research Fund.

^{**} Corresponding author, Email: globaloptima@hufs.ac.kr

116 PARK AND LEE

$$Z^* = \min\{c^T x + \max_{\{K \mid K \subseteq N, |K| \le \Gamma\}} \sum_{j \in K} d_j x_j \mid x \in X\}$$
 (1)

In (1), Γ is a given integer which is used to control the robustness of the solution [1], where $1 \le \Gamma \le n$.

We assume that the indices are ordered in such that $d_1 \ge d_2 \ge \cdots \ge d_n$ and also define $d_{n+1} = 0$. Bertsimas and Sim [1] proved that the problem (1) can be solved by solving at most n+1 nominal problems which is summarized as follows:

$$Z^* = \min_{l=1,\dots,n+1} G^l, \tag{2}$$

where for $l = 1, \dots, n+1$:

$$G^{l} = \Gamma d_{l} + \min\{c^{T}x + \sum_{j \in N_{l}} (d_{j} - d_{l})x_{j} \mid x \in X\},$$
(3)

where $N_i = \{j \in N \mid j \le l\}$. The proof is based on the duality of linear programming, see [1]. The result is very useful in that we can solve combinatorial optimization with data uncertainty on the objective coefficients by solving a few numbers of nominal problems. So, if an ordinary problem can be solved in a polynomial time, its robust version also can be solved in a polynomial time, for example, the robust shortest path problem.

However, one can easily note that if $\Gamma = n$, we need to solve only one problem. So we can conjecture the number of problems needed may be reduced and it should depend on Γ . In the next section, we show that this is actually true and the number of problems needed is $n-\Gamma+1$.

2. Improvement of the Algorithm

In this section, we will use pure combinatorial arguments. Let $K \subseteq 2^N$ be the set of feasible solutions for a given combinatorial optimization problem. For $K \in K$, let us define $\Gamma(K)$ as follows:

$$\Gamma(K) = K, \text{ if } |K| \le \Gamma$$

$$\Gamma(K) \subset K, \text{ such that } |\Gamma(K)| = \Gamma \text{ and } \max_{j \in \Gamma(K)} \{j\} < \min_{j \in K \setminus \Gamma(K)} \{j\}, \text{ if } |K| \ge \Gamma + 1 \qquad (4)$$

Also define $v(K) = \sum_{j \in K} c_j + \sum_{j \in \Gamma(K)} d_j$. Then the problem (1) can be restated as follows:

$$Z^* = \min\{v(K) \mid K \in K\}$$
 (5)

For $l = 1, \dots, n+1$, let us define

$$v_l(K) = \Gamma d_l + \sum_{j \in K} c_j + \sum_{j \in K_l} (d_j - d_l)$$
 (6)

where $K_l = K \cap N_l = \{j \in K \mid j \le l\}$.

Now we can prove the main result. First, we need two lemmas.

Lemma 1. For $K \in K$ with $|K| \leq \Gamma$,

$$v(K) = v_{n+1}(K) \text{ and}$$

$$v(K) \le v_l(K), \text{ for all } 1 \le l \le n$$
 (7)

Proof. Since $|K| \le \Gamma$, we have $\Gamma(K) = K$. Hence $v(K) = v_{n+1}(K)$ holds.

Consider a case with *l*, where $1 \le l \le n$. Then

$$v_{l}(K) = \Gamma d_{l} + \sum_{j \in K} c_{j} + \sum_{j \in K_{l}} (d_{j} - d_{l})$$

$$= \sum_{j \in K} c_{j} + \sum_{j \in K_{l}} d_{j} + (\Gamma - |K_{l}|) d_{l} \ge v(K).$$

Lemma 2. For $K \in K$ with $|K| \ge \Gamma + 1$,

$$v(K) = v_{l^*}(K)$$
 and $v(K) \le v_l(K)$, for all $l \ne l^*$, (8)

where $l^* = \max\{j \mid j \in \Gamma(K)\}$.

Proof. First note that when $l = l^*$, $K_{l^*} = \Gamma(K)$ and so

$$v_{l^*}(K) = \Gamma d_{l^*} + \sum_{j \in K} c_j + \sum_{j \in K_{l^*}} (d_j - d_{l^*}) = v(K)$$
.

Consider the case where $l < l^*$. In this case, $K_l \subset \Gamma(K)$, $|K_l| < \Gamma$ and so

$$\begin{split} v_{l}(K) &= \Gamma d_{l} + \sum_{j \in K} c_{j} + \sum_{j \in K_{l}} (d_{j} - d_{l}) \\ &= \sum_{j \in K} c_{j} + \sum_{j \in K_{l}} d_{j} + (\Gamma - |K_{l}|) d_{l} \ge v(K). \end{split}$$

Now let $l > l^*$. In this case, $\Gamma(K) \subseteq K_l$ and so

$$v_{l}(K) = \Gamma d_{l} + \sum_{j \in K} c_{j} + \sum_{j \in K_{l}} (d_{j} - d_{l})$$

$$= \sum_{j \in K} c_{j} + \sum_{j \in \Gamma(K)} d_{j} + \sum_{j \in K_{l} \setminus \Gamma(K)} (d_{j} - d_{l}) \ge v(K).$$

By using the above two lemmas, we can prove the main result as presented below.

Proposition 1. The problem (5) (and also the problem (1)) can be solved by solving the $n-\Gamma+1$ nominal problems:

$$Z^* = \min_{l=\Gamma_{\ell}, \dots, n-1, n+1} G^l,$$
 (9)

where for $l = \Gamma, \dots, n-1, n+1$:

$$G^{l} = \min\{v_{l}(K) = \Gamma d_{l} + \sum_{j \in K} c_{j} + \sum_{j \in K_{l}} (d_{j} - d_{l}) \mid K \in K\}$$

$$= \Gamma d_{l} + \min\{c^{T} x + \sum_{j \in N_{l}} (d_{j} - d_{l}) x_{j} \mid x \in X\}$$
(10)

Proof. First, note that from lemmas 1 and 2,

$$Z^* = \min\{v(K) \mid K \in K\} = \min_{l=1,\dots,n+1} \{v_l(K) \mid K \in K\}.$$
(11)

In Lemma 2, since $|K| \ge \Gamma + 1$, we should have $l^* \ge \Gamma$. So in (10), we can ignore the cases where $l < \Gamma$. Now if $l^* = n$ in Lemma 2, $\Gamma(K) = K_n = K$. So the case is covered by Lemma 1. Hence we have

$$Z^* = \min_{l=1,\dots,n+1} \{ v_l(K) \mid K \in K \} = \min_{l=1,\dots,n+1, n+1} \{ v_l(K) \mid K \in K \}.$$

In [1], robust approximation algorithms were also presented which needed n+1 nominal approximation problems. By using the same method, we can also show that the number of problems can be reduced to $n-\Gamma+1$.

Finally, we want to mention that the argument used in this note is different from that in [1]. Only combinatorial argument is used here and so it can be viewed as another approach to obtain the result.

References

- [1] Bertsimas, D. and M. Sim, "Robust discrete optimization and network flows," *Mathematical Programming Ser. B* 98 (2003), 49-71.
- [2] Bertsimas, D. and M. Sim, "The price of robustness," *Operations Research* 51 (2004), 35-53.
- [3] Bertsimas, D. and R. Weismantel, *Optimization over Integers*, Dynamic Ideas, Belmont, 2005.