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Real-Coded Genetic Algorithm Based Design and Analysis
of an Auto-Tuning Fuzzy Logic PSS

Rahmat-Allah Hooshmand* and Mohammad Ataei**

Abstract - One important issue in power systems is dynamic instability due to loosing balance
relation between electrical generation and a varying load demand that justifies the necessity of
stabilization. Moreover, Power System Stabilizer (PSS) must have capability of producing appropriate
stabilizing signals over a wide range of operating conditions and disturbances. To overcome these
drawbacks, this paper proposes a new method for robust design of PSS by using an auto-tuning fuzzy
control in combination with Real-Coded Genetic Algorithm (RCGA). This method includes two fuzzy
controllers; internal fuzzy controller and supervisor fuzzy controller. The supervisor controller tunes
the internal one by on-line applying of nonlinear scaling factors to inputs and outputs. The RCGA-
based method is used for off-line training of this supervisor controller. The proposed PSS is tested in
three operational conditions; nominal load, heavy load, and in the case of fault occurrence in
transmission line. The simulation results are provided to compare the proposed PSS with conventional
fuzzy PSS and conventional PSS. By evaluating the simulation results, it is shown that the
performance and robustness of proposed PSS in different operating conditions is more acceptable

Keywords: Auto-Tuning Fuzzy Controller, Dynamic Stability, Power System Stabilizer, Real Coded

Genetic Algorithm

1. Introduction

Power systems are usually encountered different
disturbances, which cause low-frequency oscillations in the
system. If the damping torque is insufficient, these
oscillations grow and consequently the dynamic instability
of the system is occurred. In the two last decays, in order to
improve the dynamic stability, using of supplementary
stabilizing signals in addition to the excitation systems,
have been significantly considered[1-20]. Today, conventional
PSS with excitation system is widely used in power plants.
The tuning of these controllers are usually accomplished
based on a linearized model around a single operating
condition. Because of approximation in modeling and wide
range of operating conditions, and variation of the system
topology due to error occurrence, conventional PSS does
not provide satisfactory results over a wide range of
operating conditions. In recent years, different methodologies
based on non-linear control techniques [9], adaptive control [5],
[10-13], and artificial intelligence-based approaches [4-8], [11],
[13-20] have been proposed to design PSS. Moreover, recent
developments in design and manufacturing of excitation
systems make the applications of the above-mentioned
techniques not only possible but also easy.
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In adaptive techniques, on-line system identification is
needed which makes these techniques difficult and time
consuming and even sometimes impossible. The artificial
intelligence-based approaches include fuzzy logic [4,5,8,11,
13,14,16,17], neural networks [5,13,15], and intelligent search
algorithm such as genetic algorithm [5-7], [20], Tabo search
algorithm[19], and Partial Swarm Optimization algorithm[18].
Fuzzy logic-based PSSs have great potential in increasing
the damping of generator oscillations. The main advantage
of fuzzy controllers is no requirement to perfect model of
the system. When fuzzy logic-based PSS is added to auto-
tuning abilities, it exhibits great capabilities and this is the
main idea of this paper.

In this paper, an auto-tuning fuzzy logic-based PSS is
presented. The proposed PSS includes two fuzzy
controllers; internal fuzzy controller and supervisor fuzzy
controller. The supervisor controller, tunes the internal one
by on-line applying of scaling factors to inputs and outputs.
This supervisor controller is trained by using genetic
algorithm, however, since the length of the chromosome is
large in GA method, in this paper this fuzzy controller is
tuned off-line by using RCGA. In this case, the speed of
computations in the parameters tuning will be high.

2. Problem Formulation

2.1 System Modeling
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In single machine infinite bus system, the synchronous
machine (generator) is connected to an infinite bus through
a transformer and two parallel transmission lines. In
generator bus, a local load is also supplied. The generator
is equipped with an Automatic Voltage Regulator (AVR) in
order to keep the voltage level within desired limit. Figure
(1) shows the single line schematic of the system. Of
course, in this figure, also controller systems injected to the
AVR is presented, where they are discussed in the next
sections.

In this paper, for the analysis and design of control
system, the Heffron-Phillips linearized model is used
whose block diagram is shown in figure (2). The proposed
PSS is evaluated in three operational conditions; nominal
load, heavy load, and in the case of fault occurrence in the
transmission line.
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Fig. 1. Schematic of the single machine power system
connected to an infinite bus

The linearized state equations of the single machine
connected to an infinite bus are given as:
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Fig. 2. The block diagram of the Heffron-Phillips model of
single machine infinite bus system

2.2. Conventional PSS (CPSS) Design

The control objective of PSS is to suppress the generator
electromechanical oscillations and enhance the overall
stability of power system by using a supplementary
stabilizing signal in the excitation system. This stabilizer
should be designed so that the delayed phase is deleted and
by high bandwidth feedback makes it possible that system
responds quickly to the stabilizing corrections. This
conventional PSS is a double stage Lead-Lag compensator
with time constants 7 to 7,and gain K, as following:

K(s)= K ( Ty -S )(HTI-SJ.(HQ-S) .
Pty 8) Uery-s) a7y S

where T, isthe washout time constant needed to prevent

steady state offset of the voltage and is selected equal to 10
seconds. The value ranges of other parameters are usually
as follows:

20 ,
O<Kp<20.

7,2001 , Ty<1 |

In this PSS, usually A@ is sampled and suitable signal
for reference voltage (Upss) in Heffron-Phillips model is
obtained.

3. Fuzzy Logic Power System Stabilizer (FLPSS)

Power systems usually operate under highly uncertain
and stress conditions. Moreover, load variations cause the
generator dynamic characteristics also vary so different
operating conditions are obtained. Therefore, power system
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controllers should be designed to maintain the robust
stability of the system. On the other hand, a CPSS is
designed for a linear model representing the generator at a
certain operating point and it often does not provide
satisfactory results over a wide range of operating
conditions. To overcome these drawbacks, fuzzy logic
controller (FLC) is an effective tool, which has non-linear
structure. In fuzzy controller design, there is no need to
perfect model of the system, which is a significant
advantage.

In what follows, we will describe how the FLPSS has
been synthesized. The design process of fuzzy logic
controller may be split into five steps: 1) the selection of
control variables, 2) the membership function definition or
“the fuzzification”, 3) the rule creation or “the knowledge
base”, 4) the fuzzy interface engine, and 5) the
defuzzification strategy or “the defuzzifier”. These steps
are shown in figure (3).
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Fig. 3. The basic structure of the fuzzy controller

Also, in figure (4) it is shown how to use fuzzy
controller in a PSS structure. In the proposed method, two
variables Aw and A@ are used as input signals in PSS.
The coefficients K;,; and K;,, in input stage, keep the

input signals within allowable limit. These coefficients are
called scaling factors which transform the real value scale
to required value in decision limit. The output signal (Upss)
is injected to the summary point of the AVR as the
supplementary signal.

Each of FLPSS input and output fuzzy variables
Y = (Aw, Ao, U psg) membership functions have been

chosen identical because of the normalization achieved on
the physical variables. The normalization is important
because it allows the controller to associate equitable
weight to each of the rules and therefore, to calculate
correctly the stabilizing signal.
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Fig. 4. Schematic Structure of FLPSS

Each of the input and output fuzzy variables, y; is
assigned seven linguistic fuzzy subsets varying from
Negative Big (NB) to Positive Big (PB). Each subset is
associated with a triangular membership function to form a
set of seven normalized and symmetrical triangular
membership functions for fuzzy variables (see figure (5)).

The yp.cand y.. represent maximum and minimum
variation of the input and output signals. These values are
selected based on simulation data. The range of each fuzzy
variable is normalized between -4 to 4 by introducing a
scaling factor to represent the actual signal.
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Fig. 5. Fuzzy variable, y;, seven membership functions

The output signal was obtained by using the following

principles:

e f the speed deviation is important, but tends to
decrease, then the control must be moderated. In other
words, when the machine decelerates, even though the
speed is important, the system is capable, by itself, to
return to steady state.

o f the speed deviation is weak, but tends to increase,
the control must be significant. In this case, it means
that, if the machine accelerates, the control must
permit to reverse the situation.

The interface mechanism of the FLC is represented by a
7 x 7 decision table. The set of decision rules relating all
possible combinations of inputs to outputs is based on
previous experience in the field. This set is made up of 49
rules expressed using the same linguistic variables as those
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of the inputs and is stored in the form of a decision table
shown in table (1).

Table 1. FLPSS decision table

o
A®
NB | NB ! NB | NB | NB | NM | NS Z
NM | NB | NB | NM | NM | NS Z PS
NS [ NB | NM | NM | NS Z PS PM
Z NM [ NM | NS Z PS PM | PM
PS | NM | NS Z PS PM | PM | PB
PM NS Z PS PM | PM PB PB
PB Z PS PM PB PB PB PB

NB [ NM | NS Z PS | PM | PB

4. Auto-Tuning Fuzzy logic PSS (ATFPSS)

An important disadvantage of fuzzy controller is that
there is no systematic scheme for parameters adjustment.
Although different types of fuzzifications, defuzzifications,
and reasoning algorithms are available which provide
possible selection of various membership functions within
allowable limits and also choice of scaling factors provide
various options for designer, however, this makes the
optimum selection problem more difficult.

In this paper, by considering seven regions of
membership functions, the number of rules is equal to 49.
This makes the membership functions more accurate and
causes to define the rule base more precisely. One other
important point is suitable determination of the scaling
factors; K;,;, , K;,; and K,, . If these factors are

determined suitably, then the probable errors in other
different parts of fuzzy controller can be neglected. For this
purpose, an Auto-Tuning Fuzzy logic controller for PSS
(ATFPSS) is used as follows.

The proposed ATFPSS is a hierarchical controller, which
includes two fuzzy controllers. The internal controller is
the main controller whose structure was described
completely in previous section. The second controller,
which is supervisor controller, tunes the scaling factors on-
line. The schematic structure of the proposed stabilizer is
shown in figure (6).

As it is shown in this figure, in the supervisor fuzzy
controller two set of signals are used; local input signals
and supplementary signals. The local input signals are the
inputs of the main controller, i.e., the generator speed
deviation Aw@ and its derivative A® . Also, the
supplementary signal in this supervisor fuzzy controller is
virtual time signal. This signal is obtained in the system
starting with disturbance occurrence and is continued by a

unit ramp function in the considered time, which is 5
seconds in our case study. Of course, these signals can be
supplementary signals, which are not taken from local
system and can be received from other points of the system
or from protection relays. Moreover, the output signals of
the supervisor controller are the scaling factors K, ,

K> and K, which are determined on-line in order to

apply to internal (or main) controller. Therefore, the
supervisor controller has three inputs and three outputs.

The permitted range for the local input signals Aw and
A@ are [-4, +4] and [-1, +1] respectively, and for the
supplementary input signal # is selected as [0, +5]. Also, the
permitted limit for each output signal of supervisor
controller is considered as [0, +10].

In the supervisor fuzzy controller, to make the
computations easier and quick, triangular membership
functions are used in the input-output space. For the first
input allowable limit A , because of its importance, five
triangular membership functions with uniform distribution
and 50% overlap and for the second input allowable limit
A® , three triangular membership functions are used. For
the allowable limit of the supplementary input 7 also, four
triangular membership functions with 50% overlap is
considered. Therefore, input space is three-dimensional
space and divided into 60 subspaces. The fuzzy rules of the
supervisor fuzzy controller for the first output K, is

presented in table (2). For two other outputs K;,, and
K, can also be presented in the same table, however,

for the second and third outputs, the membership functions
have the index 2,i and 3,i respectively. Of course, the
distribution routine of these membership functions are not
definite for which in the next section a novel technique is
presented.
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Fig. 6. Schematic structure of the proposed Auto-Tuning
Fuzzy Controller
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Table 2. The Fuzzy rules for the first output in the

supervisor fuzzy controller

m—)
Time || A NB NM Z PM PB
N MF,, | MFy, | MF,3 | MF,, | MF,;
VS V4 MFs | MF,; | MF3 | MF,o | MF, o
P MF, ;| MF) 5 | MF, 13 | MF) 4 | MF) s
N MF; 16 | MFy 17 | MFy 15 | MF| 10 | MF; 5
S z MF )51 | MF 2; | MF; 23 | MF| 24 [ MF) 25
P MF 26 | MF 27 | MF153 | MF 29 [ MF| 3
N MF 31 | MF 3 | MF 33 | MF 34 | MF 35
M V4 MF 36 | MF| 37 | MF; 38 | MF, 39 | MF| 49
P MF, 4 | MF; 55 | MF 43 | MF, 44 | MF 45
N | MFi4 | MF 47 | MF 48 | MF, 4 | MF 50
B z MF, 5 { MF; 55 | MF; 53 | MF, 54 | MF, 55
P MF 56 | MF 57 | MF| 55 | MF; 59 | MF; 49

In figure (7), the surface control of interface mechanism
of the supervisor fuzzy control is presented for all outputs.
These surfaces are achieved by RCGA based optimization
where discussed in the next section. In this figure, the first,
second and third inputs are the generator speed deviation
(A@), its derivative (Aw ) and virtual time signal
respectively. Also, the outputs are scaling factors of K

K> and K
(7.b) and (7.c) respectively.
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Fig. 7. Control Surface of supervisor fuzzy controller for; a) The first scaling factor (K;,;); b) The second scaling factor
(Kin2); ¢) The Third scaling factor (K,,,)

5. Application of RCGA in ATFPSS

As it was explained in the previous section, in the
supervisor fuzzy controller which tunes the scaling factors
Ky » Kipp and K, on-line, all the parameters of the

membership functions related to inputs, outputs and rules
(presented in table (2)) are not definite. Since these
parameters can be determined off-line, using of RCGA in
their determination is very effective. In this paper, RCGA
instead of the conventional Standard GA (SGA) is used,
because the SGA encodes the optimization parameters into
binary code string. Real-valued encodings have been
confirmed to have better performance than either binary or
gray encoding for constraint optimization problems [21].
So, in the RCGA, a gene is the optimization parameter
itself where it is selected from Alphabet set. The
chromosome takes the form:

chromosome = [al ay - aN] ©)

where ay,..,ay are all real values of membership

function parameters related to inputs, outputs, and fuzzy
rules in supervisor controller.
The RCGA structure is summarized as follows:

1) Inmitial population: The RCGA operates on a
population of N ,,, chromosomes simultaneously.
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The initial population of real number vectors is
created randomly. In this paper, the population size
(N pop) is selected as the number of genes of each

chromosome. Once the initialization is completed,
the population enters the main GA loop. In this loop,
the stages 2 to 7 are carried out in turn. The GA loop
continues until the termination conditions in stage 3
are fulfilled.

2) Scaling: The scaling operator, a preprocessor, is
usually used to scale the objective function into an
appropriate Fitness Function. The fitness value for
each member of population is determined by
relation (5):

m
Fitness(n) = M — z (ai ATAE; 195 + B; - y5iea? )—

i=1

- (4 -dif;)
i=1

&)

where m is the number of operating conditions, which for
determination of the fitness amount of each population
member is evaluated. In this paper, m is considered equal 3.
In other words, 3 operational conditions are used; nominal
load, heavy load, and fault occurrence in transmission line.
Also, ITAE is Integral Time-weighted Absolute value of

Error, yax is the maximum of the absolute value of the

generator speed deviation A, dif denotes to the number
of sign changes in derivative of the generator speed, «,
£ and A are the coefficients which are selected by

designer and show in fact, the weighting of other
parameters (Vmax, dif, ITAE). M is a large positive value. In
our case study, these values are selected as a = £=1000,

A=0.08, and M=100. It should be noted that, +0.2 in
the relation (5) means that in determining the amount of
fitness, both positive and negative disturbances are applied
to the system.

3) Termination criterion: After the fitness has been
calculated, it has to be determined if the termination
criterion has been met. This can be done in several
ways. The algorithm used here stops when a finite
generation number has been reached and the best fit
among the population is declared the winner and
solution to the problem.

4) Selection: The selection (or reproduction) operator
selects good chromosomes on the basis of their
fitness values and produces a temporary population,
namely, the mating pool. This can be achieved by
many different schemes, but the most common

method is Roulette Wheel Selection. This operation
generates a measure that reflects the fitness of the
previous generation's candidates.

5) Crossover: The crossover operator is the main
search tool. It mates chromosomes in the mating pool
by pairs and generates candidate offspring by
crossing over the mated pairs with probability P, -

The probability of parent-chromosome crossover is
assumed to be between 0.6 and 1.0. Here, the
arithmetical one-point crossover is used and
introduced.

6) Mutation: After crossover, some of the genes in the
candidate offspring are inverted with the probability
P - This is the mutation operation for the GA. In

.
this paper, the probability of non-uniform mutation
( Py ) 1s assumed to be between 0.01 and 0.1.

7) Elitism: The postprocessor is the elisit model. The
worst chromosome in the newly generated
population is replaced by the best chromosome in the
old population if the best number in the newly
generated population is worse than that in the old
population. It is adopted to ensure the algorithm's
convergence. This method of preserving the elite
parent is called elitism.

6. Simulation Results
6.1. Initial Data

To demonstrate the effectiveness of the proposed PSS
whose parameters are adapted by the Adaptive Fuzzy
Logic (and are tuned by RCGA), time domain simulations
were performed for the generator under major disturbance
conditions over a wide range of loading conditions.

The considered system is a synchronous machine
connected to an infinite bus through two parallel
transmission lines as shown in figure (1).

In this paper, in order to investigate the performance of
the proposed stabilizer, the Heffron-Phillips linearised
model as figure (2) is used. The initial values and constants
of the related system, which are used in the simulations,
are summarized in table (3).

Moreover, since the performance of the proposed
stabilizer is investigated for three different operating
conditions (nominal load, heavy load, and in the case of
fault occurrence in transmission line), the required
coefficients for these conditions are given in table (4) [22].
In table (5), the poles and zeroes of the power system are
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Table 3. Initial values and constants of the single machine
connected to infinite bus

Generator | M =9.26,D=0,T4, =7.76, X4 =0.973,
Constants | X4 =0.19, X, =0.55

Exciter | p —50.0, T, - 0.05
Constants

Line | R =0.051,X, =149,R, =0102,

Parameters| X, =299,G=0249,B=10262
Initial
Vr:hizs P,y =1.0pu, 0, =0.015pu,¥,; =1.05pu

presented which as expected, without the supplementary
excitation system (i.e. without PSS signal), system is
unstable and there is a non-minimum phase zero and also a
zero in the origin.

Table 4. The coefficients K; to K for the Heffron-Phillips

model in different operational conditions

Operation
Conditions| K K Ks K4 Ks Ks
Nominal 1 514111 2067/0.6584(0.6981|-0.0955(0.8159
Load
Heavy 1 456311.447700.6584]0.8706|-0.1675]0.7747
Load
Faltin -\ 100711.1404/0.7095(0.6834]-0.1207]0.8348
the Line

Table 5. Poles and zeroes of the power system

Poles Zeros
0.2951+j4.9596 0
0.2951-]4:.9596 3.9694%¢7

-10.3929+j3.2837 3.9694%¢7
-10.3929-3.2837 '

6.2. Simulation results of the proposed ATFPSS and
comparison with CPSS and CFPSS

In this section, in order to investigate the performance of
the proposed Auto-tuning Fuzzy logic PSS (ATFPSS),
which is tuned by RCGA, a CPSS and a CFPSS (which are
tuned by GA) are also designed and simulated.

In order to compare the performance of the above
mentioned PSSs, the speed deviation and torque angle
deviation of the generator when mechanical torque was
changed by 0.2(p.u.) in three operating conditions (nominal
load, heavy load, and in the case of fault occurrence in
transmission line), are presented. Also, to evaluate the
performance of the designed PSSs, three following indices
are introduced: i) the maximum speed deviation of the
generator (Aw@p,,, ), it) Integral Absolute value of Error

(IAE), and iii) ITAE.

The speed deviation of the generator for step disturbance
in the mechanical torque with amplitude +0.2(p.u.) in the
nominal load operating condition for CPSS, CFPSS, and
ATFPSS is shown in figure (8.a). Figure (8.b) also shows
the torque angle deviation of the generator for the same
above conditions. The speed deviation and torque angle
deviation of the generator for heavy load operating
condition and in the case of fault occurrence in the
transmission line are shown in figures (9) and (10) for
different PSSs. As it is seen from these figures, the graph
of Aw , and AS in the case of using RCGA-based
ATFPSS is more suitable than other PSSs in the settling
time and damping effect points of view. On the other hand,
the simulation results shows, the auto-tuning fuzzy logic
controller applied to a power system stabilizer (ATFPSS)
provided better response than the CPSS and CFPSS.

Also, the introduced indices for evaluating the
performance of the different PSSs are presented in table (6)
for different operating conditions. It is seen that the
performance criteria in the case of ATFPSS in comparison
with CPSS and CFPSS have been improved significantly.
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Table 6. The performance indices for evaluating different PSSs in three operating conditions

e . .\ .\ Fault iti
Conditions Nominal Load Condition | Heavy Load Condition | au Corfd1 ron
. in the Line |
Methods | AOpay | ITAE | TAE | AOpmax | ITAE | IAE | AOmax | ITAE | IAE
CPSS 2.70 0.81 1.37 2.57 0.77 1.26 2.81 1.20 1.76
CFPSS 1.17 0.54 0.99 1.09 0.48 0.89 1.32 0.73 1.21
Proposed Method: ATFPSS| 0.96 0.40 0.73 0.80 0.39 0.67 1.07 0.55 0.89
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(2)

In this paper, a new method for Auto-tuning Fuzzy
logic Power System Stabilizers (ATFPSS) by using
Real-Coded Genetic Algorithm (RCGA) has been
presented. The related structure consists of two
fuzzy controllers; internal fuzzy Moreover, RCGA-
based method is used for off-line controller and
supervisory fuzzy controller. The supervisory
controller performs on-line tuning of scaling factors.
determination of the membership functions and rules.
The alternative options and variety of input signals
of this supervisor controller, are its important
advantages, which improves the performance and
reliability of the PSS in emergency conditions.
Finally, to evaluate the effectiveness of the proposed
methodology, two other design methods; CPSS and
CFPSS, were also simulated. The results for various
operating conditions and disturbances show that the
proposed stabilizer is able to provide good damping
over a wide range and improves the overall system
performance.
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